Skip to main content
Log in

The zitterbewegung interpretation of quantum mechanics

  • Part I. Invited Papers Dedicated To John Stewart Bell
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Thezitterbewegung is a local circulatory motion of the electron presumed to be the basis of the electron spin and magnetic moment. A reformulation of the Dirac theory shows that thezitterbewegung need not be attributed to interference between positive and negative energy states as originally proposed by Schroedinger. Rather, it provides a physical interpretation for the complex phase factor in the Dirac wave function generally. Moreover, it extends to a coherent physical interpretation of the entire Dirac theory, and it implies azitterbewegung interpretation for the Schroedinger theory as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schroedinger,Sitzungber. Preuss. Akad. Wiss. Phys.-Math. Kl. 24, 418 (1930).

    Google Scholar 

  2. Huang, “On thezitterbewegung of the electron,”Am. J. Phys. 47, 797 (1949).

    Google Scholar 

  3. A. O. Barut and A. J. Bracken, “Zitterbewegung and the internal geometry of the electron,”Phys. Rev. D 23, 2454 (1981).

    Google Scholar 

  4. H. Thirring,Principles of Quantum Electrodynamics (Academic Press, New York, 1958).

    Google Scholar 

  5. D. Hestenes,Space-Time Algebra (Gordon & Breach, London, 1966).

    Google Scholar 

  6. D. Hestenes, “Real spinor fields,”J. Math. Phys. 8, 798–808 (1967).

    Google Scholar 

  7. D. Hestenes, “Local observables in the Dirac theory,”J. Math. Phys. 14, 893–905 (1973).

    Google Scholar 

  8. D. Hestenes, “Observables, operators and complex numbers in the Dirac theory,”J. Math. Phys. 16, 556–572 (1975).

    Google Scholar 

  9. R. Gurtler and D. Hestenes, “Consistency in the formulation of the Dirac, Pauli, and Schroedinger theories,”J. Math. Phys. 16, 573–583 (1975).

    Google Scholar 

  10. D. Hestenes, “Spin and uncertainty in the interpretation of quantum mechanics,”Am. J. Phys. 47, 339–415 (1979).

    Google Scholar 

  11. D. Hestenes, “Clifford algebra and the interpretation of quantum mechanics,” inClifford Algebras and Their Applications in Mathematical Physics, J. S. R. Chisholm and A. K. Common, eds. (Reidel, Dordrecht, 1986), p. 321–346.

    Google Scholar 

  12. D. Hestenes, “Quantum mechanics from self-interaction,”Found. Phys. 15, 63–87 (1985).

    Google Scholar 

  13. D. Bohm and B. Hiley, “Unbroken quantum realism, from microscopic to macroscopic levels,”Phys. Rev. Lett. 55, 2511 (1985).

    Google Scholar 

  14. J.-P. Vigier, C. Dewney, P. R. Holland, and A. Kypriandis, “Causal particle trajectories and the interpretation of quantum mechanics,” inQuantum Implications, B. J. Hiley and F. D. Peat, eds. (Routledge & Kegan Paul, London, 1987).

    Google Scholar 

  15. D. Benderet al., “Tests of QED at 29 GeV center-of-mass energy,”Phys. Rev. D 30, 515 (1984).

    Google Scholar 

  16. D. Hestenes, “Proper particle mechanics,”J. Math. Phys. 15, 1768–1777 (1974).

    Google Scholar 

  17. D. Hestenes, “Proper dynamics of a rigid point particle,”J. Math. Phys. 15, 1778–1786 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hestenes, D. The zitterbewegung interpretation of quantum mechanics. Found Phys 20, 1213–1232 (1990). https://doi.org/10.1007/BF01889466

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01889466

Keywords

Navigation