Foundations of Physics

, Volume 20, Issue 6, pp 635–650 | Cite as

On the inverse FPR problem: Quantum is classical

  • George Svetlichny
Part II. Invited Papers Dedicated To The Memory Of Charles H. Randall (1928–1987)


The notion of quantum supports introduced by Foulis, Piron, and Randall can be used to construct combinatorial versions of contextualist hidden-variable models for finite quantum logics. The original logic can be uniquely recovered from appropriate such models as a solution of a combinatorial inverse problem. One can thus set up a classical ontology for a finite quantum logics that completely specifies it. Computer studies are used to explore the ideas.


Inverse Problem Quantum Logic Computer Study Classical Ontology Original Logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Foulis, C. Piron, and C. Randall,Found. Phys. 13, 813 (1983).Google Scholar
  2. 2.
    D. Cohen and G. Svetlichny,Int. J. Theor. Phys. 26, 435 (1987).Google Scholar
  3. 3.
    C. Piron,Foundations of Quantum Physics (Benjamin, London, 1976).Google Scholar
  4. 4.
    G. Svetlichny,Found. Phys. 16, 1285 (1986).Google Scholar
  5. 5.
    G. E. Huges and M. J. Cresswell,An. Introduction to Modal Logic (Methuen, London, 1977).Google Scholar
  6. 6.
    B. F. Chellas,Modal Logic, an Introduction (Cambridge University Press, Cambridge, 1984).Google Scholar
  7. 7.
    G. Svetlichny,Int. J. Theor. Phys. 26, 221 (1987).Google Scholar
  8. 8.
    J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955).Google Scholar
  9. 9.
    A. M. Gleason,J. Math. Mech. 6, 885 (1957).Google Scholar
  10. 10.
    S. Kochen and E. P. Specker,J. Math. Mech. 17, 59 (1967).Google Scholar
  11. 11.
    J. S. Bell,Rev. Mod. Phys. 38, 477 (1966).Google Scholar
  12. 12.
    A. Shimony,Br. J. Philos. Sci. 35, 25 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • George Svetlichny
    • 1
  1. 1.Departamento de MatematicaPontificia Universidade CatolicaRio de JaneiroBrasil

Personalised recommendations