Advertisement

Foundations of Physics

, Volume 13, Issue 7, pp 655–672 | Cite as

On the foundations of the physical probability concept

  • Alois Hartkämper
  • Heinz-Jürgen Schmidt
Part I. Invited Papers Dedicated to Günther Ludwig

Abstract

An exact formulation of the frequency interpretation of probability is proposed on the basis of G. Ludwig's concept of physical theories. Starting from a short outline of this concept, a formal definition of weak approximate reduction is developed, which covers the reduction of probability to frequency as a special case.

Keywords

Formal Definition Physical Theory Exact Formulation Physical Probability Probability Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. von Mises,Wahrscheinlichkeit Statistik und Wahrheit (Springer, Berlin, 1972).Google Scholar
  2. 2.
    G. Ludwig,Deutung des Begriffs “physikalische Theorie” und axiomatische Grundlegung der Hilbertraumstruktur der Quantenmechanik durch Hauptsätze des Messens (Lecture Notes in Physics4) (Springer, Berlin, 1970).Google Scholar
  3. 3.
    G. Ludwig,Einführung in die Grundlagen der theoretischen Physik, 4 volumes (Vieweg, Braunschweig, 1974–1978).Google Scholar
  4. 4.
    G. Ludwig,Die Grundstrukturen einer physikalischen Theorie (Springer, Berlin, 1978).Google Scholar
  5. 5.
    E. Scheibe, “The Approximative Explanation and the Development of Physics,” inLogic, Methodology, and Philosophy of Science IV P. Suppes, L. Henkin, A. Joja, G. C. Moisil, eds. (North Holland, Amsterdam, 1973).Google Scholar
  6. 6.
    C. U. Moulines, “Intertheoretic Approximation: The Kepler-Newton Case,”Synthese 45, 387 (1980).Google Scholar
  7. 7.
    D. Mayr, “Investigations of the Concept of Reduction II,”Erkenntnis 16, 109 (1981).Google Scholar
  8. 8.
    A. Hartkämper, H.-J. Schmidt, eds.,Structure and Approximation in Physical Theories (Plenum, New York, 1981).Google Scholar
  9. 9.
    G. Ludwig, “A Theoretical Description of Single Microsystems,” inThe Uncertainty Principle and Foundations of Quantum Mechanics, W. C. Price and S. S. Chissick, eds. (Wiley, New York, 1977).Google Scholar
  10. 10.
    G. Hardegree and P. Frazer, “Charting the Labyrinth of Quantum Logics: a Progress Report,” inCurrent Issues in Quantum Logic, E. G. Beltrametti and B. C. v. Fraasen, eds., (Plenum, New York, 1981).Google Scholar
  11. 11.
    J. L. Kelley,General Topology (van Nostrand, New York, 1955).Google Scholar
  12. 12.
    H. Neumann, “The Description of Preparation and Registration of Physical Systems and Conventional Probability Theory,”Found. Phys. 13, 761 (1983).Google Scholar
  13. 13.
    N. Bourbaki,Theory of Sets (Hermann, Paris, 1968).Google Scholar
  14. 14.
    E. Scheibe, “Theorien Strukturarten und mengentheoretische Prädikate,” preprint, 1976.Google Scholar
  15. 15.
    E. Scheibe, “On the Structure of Physical Theories,”Acta Phil. Fenn. 30(2–4), 205 (1978).Google Scholar
  16. 16.
    E. Scheibe, “A Comparison of two Recent Views on Theories,”Structure and Approximation in Physical Theories (Plenum, New York, 1981).Google Scholar
  17. 17.
    A. Kamlah, “G. Ludwig's Positivistic Reconstruction of the Physical World and his Rejection of Theoretical Concepts,”Structure and Approximation in Physical Theories (Plenum, New York, 1981).Google Scholar
  18. 18.
    N. Bourbaki,General Topology (Hermann, Paris, 1966).Google Scholar
  19. 19.
    P. Suppes, “A Set of Independent Axioms for Extensive Measurement,”Portugaliae Mathematica 10, 163 (1951).Google Scholar
  20. 20.
    W. Grafe, “Differences in Individuation and Vagueness,” inStructure and Approximation in Physical Theories (Plenum, New York, 1981).Google Scholar
  21. 21.
    D. Mayr, “Approximative Reduction by Completion of Empirical Uniformities,”Structure and Approximation in Physical Theories (Plenum, New York, 1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • Alois Hartkämper
    • 1
  • Heinz-Jürgen Schmidt
    • 1
  1. 1.Fachbereich PhysikUniversität OsnabrückOsnabrückWest Germany

Personalised recommendations