Foundations of Physics

, Volume 15, Issue 4, pp 411–418 | Cite as

Gravitational radiation, source behavior, and the method of matched asymptotic expansions

  • James L. Anderson
Part I. Invited Papers Dedicated To Peter G. Bergmann


It is conjectured that a suitably modified Bondi-type expansion of the gravitational field in the radiation zone is a rapidly convergent series. It is also conjectured that the source behavior in the inner zone is insensitive to the initial conditions imposed on the gravitational field in solving the initial-value problem in this zone. Consequences of these conjectures for the problem of relating source motion to the Bondi news function are discussed.


Radiation Asymptotic Expansion Gravitational Field Gravitational Radiation Convergent Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Walker and C. M. Will,Ap. J. 242, L129 (180).Google Scholar
  2. 2.
    T. Damour, inGravitational Radiation, N. Deruelle and T. Piran, eds. (North-Holland, Amsterdam, 1983);Phys. Rev. Lett. 51, 1019 (1983).Google Scholar
  3. 3.
    W. Burke,J. Math. Phys. 12, 401 (1970).CrossRefGoogle Scholar
  4. 4.
    P. D. D'Eath,Phys. Rev. D. 11, 1387 (1975);12, 2183 (1975).CrossRefGoogle Scholar
  5. 5.
    R. E. Kates,Phys. Rev. D. 22, 1853, 1871 (1980).CrossRefGoogle Scholar
  6. 6.
    J. L. Anderson,Phys. Rev. Lett. 45, 1745 (1980).CrossRefGoogle Scholar
  7. 7.
    H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner,Proc. R. Soc. London A 269, 21 (1962).Google Scholar
  8. 8.
    J. M. Bardeen and W. H. Press,J. Math. Phys. 14, 7 (1973).CrossRefGoogle Scholar
  9. 9.
    J. Ehlers, inIsolated Systems in General Relativity, Proceedings of the International School of Physics Enrico Fermi, Course XLVII, J. Ehlers, ed. (Academic Press, New York, 1979); G. Leipold and M. Walker,Ann. Inst. H. Poincaré 27, XX (1977).Google Scholar
  10. 10.
    M. Walker and C. M. Will,Phys. Rev. D 19, 3495 (1979).CrossRefGoogle Scholar
  11. 11.
    J. L. Anderson,J. Math. Phys. 25, 1947 (1984).CrossRefGoogle Scholar
  12. 12.
    R. A. Isaacson, J. S. Welling, and J. Winicour,J. Math. Phys. 24, 1824 (1983).CrossRefGoogle Scholar
  13. 13.
    J. L. Anderson, R. E. Kates, L. S. Kegeles, and R. G. Madonna,Phys. Rev. D 25, 2038 (1982).CrossRefGoogle Scholar
  14. 14.
    D. R. Brill,Ann. Phys. 7, 466 (1959) C. W. Misner,Phys. Rev. 118, 1110 (1960).CrossRefGoogle Scholar
  15. 15.
    J. L. Anderson and D. Hobill, to be published.Google Scholar
  16. 16.
    R. Bellman and K. L. Cooke,Differential-Difference Equations (Academic Press, New York, 1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • James L. Anderson
    • 1
  1. 1.Stevens Institute of TechnologyHoboken

Personalised recommendations