Advertisement

Constructive Approximation

, Volume 6, Issue 4, pp 353–361 | Cite as

A lower bound for the number of function evaluations in an error estimate for numerical integration

  • Ronald Cools
  • Ann Haegemans
Article
  • 45 Downloads

Abstract

A popular practical way to estimate the error in numerical integration is to use two cubature formulae. In this paper we give a lower bound for the number of function evaluations necessary to approximate the integral and the error.

Key words and phrases

Quadrature Cubature Error estimate Lower bound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Berntsen, T. O. Espelid (1984):On the use of Gauss quadrature in adaptive automatic integration schemes. BIT,24:239–242.Google Scholar
  2. 2.
    J. Berntsen, T. O. Espelid (1988):On the construction of higher degree three-dimensional embedded integration rules. SIAM J. Numer. Anal.,25:222–234.Google Scholar
  3. 3.
    R. Cools, A. Haegemans (1986):Optimal addition of knots to cubature formulae for planar regions. Numer. Math.,49:269–274.Google Scholar
  4. 4.
    R. Cools, A. Haegemans (1987):Construction of sequences of embedded cubature formulae for circular symmetric planar regions. In: Numerical Integration (P. Keast, G. Fairweather, eds.). Dordrecht: Reidel, pp. 165–172.Google Scholar
  5. 5.
    R. Cools, A. Haegemans (1988):An embedded pair of cubature formulae of degree 5 and 7 for the triangle. BIT,28:357–359.Google Scholar
  6. 6.
    R. Cools, A. Haegemans (1989):The Construction of Multi-Dimensional Embedded Cubature Formulae. Numer. Math.,55:735–745.Google Scholar
  7. 7.
    A. C. Genz, A. A. Malik (1983):An imbedded family of fully symmetric numerical integration rules. SIAM J. Numer. Anal.,20:580–588.Google Scholar
  8. 8.
    D. P. Laurie (1985):Practical error estimation in numerical integration. J. Comput. Appl. Math.,12 & 13:425–431.Google Scholar
  9. 9.
    H. M.Möller (1973): Polynomideale und Kubaturformeln. Dissertation, Universität Dortmund.Google Scholar
  10. 10.
    H. M. Möller (1980):Linear abhängige Punktfunktionale bei zweidimensionalen Interpolations, und Approximationsproblemen. Math. Z.,173:35–49.Google Scholar
  11. 11.
    P. Rabinowitz, J. Kautsky, S. Elhay, J. C. Butcher (1987):On sequences of imbedded integration rules. In: Numerical Integration (P. Keast, G. Fairweather, eds.). Dordrecht: Reidel, pp. 113–139.Google Scholar
  12. 12.
    A. H. Stroud (1971): Approximate Calculation of Multiple Integrals. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1990

Authors and Affiliations

  • Ronald Cools
    • 1
  • Ann Haegemans
    • 1
  1. 1.Department of Computer ScienceKatholieke Universiteit LeuvenHeverleeBelgium

Personalised recommendations