A domain decomposition method for conformal mapping onto a rectangle

Abstract

Letg be the function which maps conformally a rectangleR onto a simply connected domainG so that the four vertices ofR are mapped respectively onto four specified pointsz 1,z 2,z 3,z 4 on∂G. This paper is concerned with the study of a domain decomposition method for computing approximations tog and to an associated domain functional in cases where: (i)G is bounded by two parallel straight lines and two Jordan arcs. (ii) The four pointsz 1,z 2,z 3,Z 4, are the corners where the two straight lines meet the two arcs.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    N. V. Challis, D. M. Burley (1982):A numerical method for conformal mapping. IMA J. Numer. Anal.,2:169–181.

    Google Scholar 

  2. 2.

    D. Gaier (1964): Konstruktive Methoden der konformen Abbildung. Berlin: Spring-Verlag.

    Google Scholar 

  3. 3.

    D. Gaier (1972):Ermittlung des konformen Moduls von Vierecken mit Differenzenmethoden. Numer. Math.,19:179–194.

    Google Scholar 

  4. 4.

    D. Gaier, F. Huckemann (1962):Extremal problems for functions schlicht in an annulus. Arch. Rational Mech. Anal.,9:415–421.

    Google Scholar 

  5. 5.

    D. Gaier, N. Papamichael (1987):On the comparison of two numerical methods for conformal mapping. IMA J. Numer. Anal.,7:261–282.

    Google Scholar 

  6. 6.

    I. E.Garrick (1936): Potential Flow about Arbitrary Biplane Wing Sections. NACA Report 542.

  7. 7.

    G. Hardy, J. E. Littlewood, G. Pólya (1952): Inequalities, 2nd edn. Cambridge: Cambridge University Press.

    Google Scholar 

  8. 8.

    P. Henrici (1986): Applied and Computational Complex Analysis, Vol. III. New York: Wiley.

    Google Scholar 

  9. 9.

    L. H. Howell, L. N. Trefethen (1990):A modified Schwarz-Christoffel transformation for elongated regions. SIAM J. Sci. Statist. Comput.,11:928–949.

    Google Scholar 

  10. 10.

    K. Menke (1987):Distortion theorems for functions schlicht in an annulus. J. Reine Angew Math.,375/376:347–361.

    Google Scholar 

  11. 11.

    C. D. Mobley, R. J. Stewart (1980):On the numerical generation of boundary-fitted orthogonal curvilinear coordinate systems. J. Comput. Phys.,34:124–135.

    Google Scholar 

  12. 12.

    N. Papamichael (1989):Numerical conformal maping onto a rectange with applications to the solution of Laplacian problems. J. Comput Appl. Math.,28:63–83.

    Google Scholar 

  13. 13.

    N. Papamichael, C. A. Kokkinos, M. K. Warby (1987):Numerical techniques for conformal mapping onto a rectangle. J. Comput Appl. Math.,20:349–358.

    Google Scholar 

  14. 14.

    N. Papamichael, N. S. Stylianopoulos (1990):On the numerical performance of a domain decomposition method for conformal mapping. In: Computational Methods and Function Theory (St. Ruscheweyh, E. B. Saff, L. C. Salinas, R. S. Varga, eds.). Lecture Notes in Mathematics, vol. 1435. Berlin: Springer-Verlag, pp. 155–169.

    Google Scholar 

  15. 15.

    A. Seidl, H. Klose (1985):Numerical conformal mapping of a towel-shaped region onto a rectangle. SIAM J. Sci. Statist. Comput.,6:833–842.

    Google Scholar 

  16. 16.

    L. N. Trefethen, ed. (1986): Numerical Conformal Mapping. Amsterdam: North-Holland. (Reprinted from (1986): J. Comput. Appl. Math.,14:1–269).

    Google Scholar 

  17. 17.

    J. J. Wanstrath, R. E. Whitaker, R. O. Reid, A. C. Vastano (1976): Storm Surge Simulation in Transformed Co-ordinates. Technical Report 76-3, U. S. Coastal Engineering Research Center, Fort Belvoir, VA.

    Google Scholar 

  18. 18.

    S. E. Warschawski (1945):On Theodorsen's method of conformal mapping of nearly circular regions. Quart. Apply. Math.,3:12–28.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Communicated by Dieter Gaier.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Papamichael, N., Stylianopoulos, N.S. A domain decomposition method for conformal mapping onto a rectangle. Constr. Approx 7, 349–379 (1991). https://doi.org/10.1007/BF01888163

Download citation

AMS classification

  • 30C30

Key words and phrases

  • Numerical conformal mapping onto a rectangle
  • Quadrilaterals
  • Conformal modules
  • Domain decomposition