Constructive Approximation

, Volume 7, Issue 1, pp 209–220 | Cite as

On computational aspects of simplicial splines

  • M. Neamtu
  • C. R. Traas
Article

Abstract

Some new results on multivariate simplex B-splines and their practical application are presented. New recurrence relations are derived based on [2] and [15]. Remarks on boundary conditions are given and an example of an application of bivariate quadratic simplex splines is presented. The application concerns the approximation of a surface which is constrained by a differential equation.

AMS classification

41A15 41A63 65D07 

Key words and phrases

Multivariate B-splines Simplex splines Cone splines Recurrence relations Multivariate divided differences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. de Boor, T. Lyche, L. L. Schumaker (1976):On calculating with B-splines, II. Integration. In: Numerical Methods of Approximation Theory (L. Collatz, G. Meinardus, H. Werner, eds.). Basel: Birkhäuser, pp. 123–146.Google Scholar
  2. 2.
    E. Cohen, T. Lyche, R. F. Riesenfeld (1987):Cones and recurrence relations for simplex splines. Constr. Approx.,3:131–141.Google Scholar
  3. 3.
    W. Dahmen (1979):Multivariate B-splines-recurrence relations and linear combinations of truncated powers. In: Multivariate Approximation Theory (W. Schempp, K. Zeller, eds.). Basel: Birkhäuser, pp. 64–82.Google Scholar
  4. 4.
    W. Dahmen (1980):Konstruktion mehrdimensionaler B-splines und ihre Anwendungen auf Approximationsprobleme. In: Numerical Methods of Approximation Theory (L. Collatz, G. Meinardus, H. Werner, eds.). Basel: Birkhäuser, pp. 84–110.Google Scholar
  5. 5.
    W. Dahmen, C. A. Micchelli (1981):Computation of inner products of multivariate B-splines. Numer. Funct. Anal. Optim., 3:367–375.Google Scholar
  6. 6.
    W. Dahmen, C. A. Micchelli (1981):Numerical algorithms for least squares approximation by multivariate B-splines. In: Numerical Methods of Approximation Theory (L. Collatz, G. Meinardus, H. Werner, eds.). Basel: Birkhäuser, pp. 85–114.Google Scholar
  7. 7.
    W. Dahmen, C. A. Micchelli (1982):On the linear independence of multivariate B-splines, I. Triangulation of simploids. SIAM J. Numer. Anal.,19:992–1012.Google Scholar
  8. 8.
    W. Dahmen, C. A. Micchelli (1983):Recent progress in multivariate splines. In: Approximation Theory 4 (C. K. Chui, L. L. Schumaker, J. Ward, eds.). New York: Academic Press, pp. 27–121.Google Scholar
  9. 9.
    W. Dahmen, C. A. Micchelli (1983):Multivariate splines-a new constructive approach. In: Surfaces in CAGD (R. E. Barnhill, W. Boehm, eds.). Amsterdam: North-Holland, pp. 191–215.Google Scholar
  10. 10.
    R. H. J.Gmelig Meyling (1986):Polynomial Spline Approximation in Two Variables. Ph.D. Thesis, University of Amsterdam.Google Scholar
  11. 11.
    R. H. J. Gmelig Meyling (1990):Numerical solution of the biharmonic equation using different types of bivariate spline functions. In: Algorithms for Approximation II (J. C. Mason, M. G. Cox, eds.). London: Chapman and Hall, pp. 369–376.Google Scholar
  12. 12.
    R. H. J.Gmelig Meyling (1988):Smooth Piecewise Polynomials as Conforming Finite Elements for Plate Bending Problems. Memorandum 747, Department of Applied Mathematics, University of Twente.Google Scholar
  13. 13.
    K. Höllig (1982):Multivariate splines. SIAM J. Numer. Anal.,19:1013–1031.Google Scholar
  14. 14.
    M.Neamtu (1989):On the recurrence relation for multivariate B-splines with respect to dimension. Memorandum 786, Department of Applied Mathematics, University of Twente.Google Scholar
  15. 15.
    M. Neamtu (1989):Multivariate divided differences and B-splines. In: Approximation Theory 6 (C. K. Chui, L. L. Schumaker, J. Ward, eds.). New York: Academic Press, pp. 445–448.Google Scholar
  16. 16.
    M.Neamtu (1990):Multivariate divided differences, I. Basic properties. Memorandum 875, Department of Applied Mathematics, University of Twente.Google Scholar
  17. 17.
    H. R. Schwarz (1988): Finite Element Methods. London: Academic Press.Google Scholar
  18. 18.
    C. R. Traas (1986):Boundary conditions with bivariate quadratic B-splines. In: Approximation Theory 5 (C. K. Chui, L. L. Schumaker, J. Ward, eds.). New York: Academic Press, pp. 595–598.Google Scholar
  19. 19.
    C. R. Traas (1989):Approximation of surfaces constrained by a differential equation using simplex splines. In: Mathematical Methods of Computer Aided Geometric Design (T. Lyche, L. L. Schumaker, eds.). New York: Academic Press, pp. 593–599.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1991

Authors and Affiliations

  • M. Neamtu
    • 1
  • C. R. Traas
    • 1
  1. 1.Department of Applied MathematicsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations