Journal of Protein Chemistry

, Volume 15, Issue 8, pp 775–786 | Cite as

Prediction of the secondary structure content of globular proteins based on structural classes

  • Chun-Ting Zhang
  • Ziding Zhang
  • Zhimin He


The prediction of the secondary structure content (α-helix andΒ-strand content) of a globular protein may play an important complementary role in the prediction of the protein's structure. We propose a new prediction algorithm based on Chou's database [Chou (1995),Proteins Struct. Fund Genet.21, 319]. The new algorithm is an improved multiple linear regression method, taking the nonlinear and coupling terms of the frequencies of different amino acids into account. The prediction is also based on the structural classes of proteins. A resubstitution examination for the algorithm shows that the average errors are 0.040 and 0.033 for the prediction ofα-helix content andΒ-strand content, respectively. The examination of cross-validation, the jackknife analysis, shows that the average errors are 0.051 and 0.044 for the prediction ofα-helix content andΒ-strand content, respectively. Both examinations indicate the self-consistency and the extrapolative effectiveness of the new algorithm. Compared with the other methods available currently, our method has the merits of simplicity and convenience for use, as well as a high prediction accuracy. By incorporating the prediction of the structural classes, the only input of our method is the amino acid composition of the protein to be predicted.

Key words

Prediction protein α-helix content Β-strand content structural classes resubstitution jackknife 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anfisen, C. G. (1973).Science 181, 223–230.PubMedGoogle Scholar
  2. Bussian, B. M., and Sander, C. (1989).Biochemistry 28, 4271–4277.Google Scholar
  3. Chou, K. C. (1995).Proteins Struct. Funct. Genet. 21, 319–344.PubMedGoogle Scholar
  4. Chou, K. C., and Zhang, C. T. (1995).Crit. Rev. Biochem. Mol. Biol. 30, 275–349.PubMedGoogle Scholar
  5. Chou, P. Y., and Fasman, G. D. (1978).Adv. Enzymol. Relat. Subj. Biochem. 47, 45–148.Google Scholar
  6. Davies, D. (1964).J. Mol. Biol. 9, 605–609.Google Scholar
  7. Kabsch, W., and Sander, C. (1983).Biopolymers 22, 2577–2637.PubMedGoogle Scholar
  8. Klein, P. (1986).Biochim. Biophys. Acta 874, 205–215.PubMedGoogle Scholar
  9. Kneller, D. G., Cohen, F. E., and Langridge, R. (1990).J. Mol. Biol. 214, 171–182.PubMedGoogle Scholar
  10. Krigbaum, W. R., and Knutton, S. P. (1973).Proc. Nat. Acad. Sci. USA 70, 2809–2813.PubMedGoogle Scholar
  11. Levitt, M., and Chothia, C. (1976).Nature 261, 552–557.PubMedGoogle Scholar
  12. Muskal, S. M., and Kim, S.-H. (1992).J. Mol. Biol. 225, 731–717.Google Scholar
  13. Nishikawa, K., and Ooi, T. (1982).J. Biochem. 91, 1821–1824.PubMedGoogle Scholar
  14. Nishikawa, K., Kubota, Y., and Ooi, T. (1983).J. Biochem. 94, 981–985.PubMedGoogle Scholar
  15. Qian, N., and Sejnowski, T. J. (1988).J. Mol. Biol. 202, 865–884.PubMedGoogle Scholar
  16. Richardson, J. S., and Richardson, D. C. (1989). InPrediction of Protein Structure and the Principles of Protein Conformation (Fasman, G. D., ed.), Plenum Press, New York, pp. 1–98.Google Scholar
  17. Sreerama, N., and Woody, R. W. (1994).J. Mol. Biol. 242, 497–507.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Chun-Ting Zhang
    • 1
  • Ziding Zhang
    • 2
  • Zhimin He
    • 2
  1. 1.Department of PhysicsTianjin UniversityTianjinChina
  2. 2.Chemical Engineering Research CenterTianjin UniversityTianjinChina

Personalised recommendations