Journal of Protein Chemistry

, Volume 15, Issue 3, pp 281–289 | Cite as

Effect of transmembrane helix packing on tryptophan and tyrosine environments in detergent-solubilized bacterio-opsin

  • Robert Renthal
  • Patrick Haas


Bacterio-opsin (bO) is folded in a nearly native conformation in mixed micelles of dimyristoyl phosphatidyl choline (DMPC) and 3-[(3-cholamidopropyl)-dimehtylamonio]-1-propane sulfonic acid (CHAPS), but bO is partially unfolded in sodium dodecyl sulfate (SDS). UV difference spectroscopy was used to study the changes in environment of bO aromatic amino acid side chains that occur upon partial unfolding. The UV difference spectra of peptides in CHAPS/DMPC minus peptides in SDS were measured for bO and the following subfragments of bO: C1 (residues 72–248), C2 (1–71), V1 (1–166), V2 (167–248), CB7 (119–145), CB9 (164–209), and CB10 (72–118). The spectra show that, in partially unfolded bO in SDS, the Tyr and Trp absorbance is blue-shifted. The difference spectra were compared to solvent perturbation difference spectra of N-acetyl-l-tyrosine ethyl ester and N-acetyl-l-tryptophanamide. The exposure change calculated from the difference spectra was found to correlate with the change in the number of van der Waals contacting atoms upon partial unfolding, and also with the number of transmembrane helical segments. This result suggests a simple experimental method of testing helix packing arrangements derived from hydropathy plots and model building.

Key words

Bacteriorhodopsin protein folding UV difference spectroscopy detergent micelles proteolysis CNBr 







sodium dodecyl sulfate


3-[(3-cholamidopropyl)-dimethylamonio]-1-propane sulfonic acid


bacteriorhodopsin residues 72–248
















di-sodium ethylenediamine tetra-aceticacid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altenbach, C., Marti, T., Khorana, H. G., and Hubbell, W. L. (1990).Science 248, 1088–1092.PubMedGoogle Scholar
  2. Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H. (1985).Nature 318, 618–624.CrossRefGoogle Scholar
  3. Demchenko, A. (1986).Ultraviolet Spectroscopy of Proteins, Springer, New York.Google Scholar
  4. Dunach, M., Sabes, M., and Padros, E. (1983).Eur. J. Biochem. 134, 123–128.PubMedGoogle Scholar
  5. Gerber, G., Anderegg, R., Herlihy, W., Gray, C., Biemann, K., and Khorana, H. G. (1979).Proc. Natl. Acad. Sci. USA 76, 227–231.PubMedGoogle Scholar
  6. Henderson, R., Baldwin, J., Ceska, T., Zemlin, F., Beckmann, E., and Downing, K. (1990).J. Mol. Biol. 213, 899–929.PubMedGoogle Scholar
  7. Hernandez-Arana, A., and Soriano-Garcia, M. (1988).Biochem. Biophys. Acta 954, 170–175.PubMedGoogle Scholar
  8. Herskovits, T. (1967).Meth. Enzymol. 11, 748–775.Google Scholar
  9. Hojeberg, B., Lind, C., and Khorana, H. G. (1982).J. Biol. Chem. 257, 1690–1694.PubMedGoogle Scholar
  10. Hong, K., and Hubbell, W. (1973).Biochemistry 12, 4517–4523.PubMedGoogle Scholar
  11. Huang, K.-S., Bayley, H., Liao, M.-J., London, E., and Khorana, H. G. (1981).J. Biol. Chem. 256, 3802–3809.PubMedGoogle Scholar
  12. Ikai, A. (1976).J. Biochem. 29, 679–688.Google Scholar
  13. Iwata, S., Ostermeier, C., Ludwig, B., and Michel, H. (1995).Nature 376, 660–669.PubMedGoogle Scholar
  14. Lee, B., and Richards, F. (1971).J. Mol. Biol. 55, 379–400.PubMedGoogle Scholar
  15. Liao, M.-J., London, E., and Khorana, H. G. (1983).J. Biol. Chem. 258, 9949–9955.PubMedGoogle Scholar
  16. Liao, M.-J., Huang, K.-S., and Khorana, H. G. (1984).J. Biol. Chem. 259, 4200–4204.PubMedGoogle Scholar
  17. Lind, C., Hojeberg, B., and Khorana, H. G. (1981).J. Biol. Chem. 256, 8298–8305.PubMedGoogle Scholar
  18. London, E., and Khorana, H. G. (1982).J. Biol. Chem. 257, 7003–7011.PubMedGoogle Scholar
  19. Mach, H., Thompson, J., Middaugh, R., and Lewis, R. (1991).Arch. Biochem. Biophys. 287, 33–40.PubMedGoogle Scholar
  20. Nakanishi, M., Nakamura, H., Hirakawa, A., Tsuboi, M., Nagamura, T., and Saijo, Y. (1978).J. Am. Chem. Soc. 100, 272–276.Google Scholar
  21. Oesterhelt, D., and Stoeckenius, W. (1974).Meth. Enzymol. 31, 667–678.PubMedGoogle Scholar
  22. Pervushin, K., Orekhov, V., Popov, A., Musina, L., and Arseniev, A. (1994).Eur. J. Biochem. 219, 571–583.PubMedGoogle Scholar
  23. Popot, J.-L., Gerchman, S.-E., and Engelman, D. (1987).J. Mol. Biol. 198, 655–676.PubMedGoogle Scholar
  24. Popot, J. L., Engelman, D. M., Gurel, O., and Zaccai, G. (1989).J. Mol. Biol. 210, 829–847.PubMedGoogle Scholar
  25. Renthal, R., Cothran, M., Espinoza, B., Wall, K., and Bernard, M. (1985).Biochemistry 24, 4275–4279.PubMedGoogle Scholar
  26. Renthal, R., Hannapel, C., Nguyen, A., and Haas, P. (1990).Biochim. Biophys. Acta 1030, 176–181.PubMedGoogle Scholar
  27. Sigrist, H., Wenger, R., Kislig, E., and Wuthrich, M. (1988).Eur. J. Biochem. 177, 125–133.PubMedGoogle Scholar
  28. Wetlaufer, D. (1962).Adv. Protein Chem. 17, 303–390.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  1. 1.Division of Earth and Physical SciencesUniversity of Texas at San AntonioSan Antonio
  2. 2.Department of BiochemistryUniversity of Texas Health Science Center at San AntonioSan Antonio

Personalised recommendations