Journal of Protein Chemistry

, Volume 13, Issue 8, pp 681–700 | Cite as

An energy-minimized casein submicelle working model

  • T. F. Kumosinski
  • Gregory King
  • H. M. FarrellJr.


To develop a molecular basis for structure-function relationships of the complex milk protein system, an energy-minimized, three-dimensional model of a casein submicelle was constructed consisting ofκ-casein, fourαs1-casein, and fourβ-casein molecules. The models for the individual caseins were from previously reported energy-minimized, three-dimensional structures. Docking of oneκ-casein and fourαs1-casein molecules produced a framework structure through the interaction of two hydrophobic antiparallel sheets ofκ-casein with two small hydrophobic antiparallel sheets (residue 163–174) of two preformedαs1-casein dimers. The resulting structure is approximately spherically symmetric, with a loose packing density; its external portion is composed of the hydrophilic domains of the fourαs1-caseins, while the central portion contains two hydrophbic cavities on either side of theκ-casein central structure. Symmetric and asymmetric preformed dimers ofβ-casein formed from the interactions of C-terminalβ-spiral regions as a hinge point could easily be docked into each of the two central cavities of theα-κ framework. This yielded two plausible energy-minimized, three-dimensional structures for submicellar casein, one with two symmetricβ-casein dimers and one with two asymmetric dimers. These refined submicellar structures are in good agreement with biochemical, chemical, and solution structural information available for submicellar casein.

Key words

Casein structure protien functionality milk proteins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, A. E., Andrews, A. T., and Cheeseman, G. C. (1980).J. Dairy Res. 47, 371–382.Google Scholar
  2. Baldwin, R. L., and Yang, Y. T. (1974). Enzymatic and metabolic changes in the development of lactation, inLactation: A Comprehensive Treatise (Larson, B. L., and Smith, V. R., eds.), Academic Press, New York, pp. 349–355.Google Scholar
  3. Beeby, R. (1964).Biochim. Biophys. Acta 82, 418–420.PubMedGoogle Scholar
  4. Berry, G. P., and Creamer, L. K. (1975).Biochemistry 14, 3542–3545.CrossRefPubMedGoogle Scholar
  5. Byler, D. M., and Farrell, H. M., Jr. (1989).J. Dairy Sci. 72, 1719–1721.Google Scholar
  6. Byler, D. M., Farrell, H. M., Jr., and Susi, H. (1988).J. Dairy Sci. 71, 2622–2628.Google Scholar
  7. Cohen, F. E., and Kuntz, I. D. (1989). InPrediction of Protein Structure and the Principles of Protein Conformation (Fasman, J. D., ed.), Plenum Press, New York, p. 617.Google Scholar
  8. Cohen, F. E., Abarbanel, R. M., Kuntz, I. D., and Fletterick, R. J. (1986).Biochemistry 25, 266–276.PubMedGoogle Scholar
  9. Creamer, L. K. (1976).N. Z. J. Dairy Sci. Technol. 11, 30–39.Google Scholar
  10. Davies, D. T., and Law, A. J. R. (1980).J. Dairy Res. 47, 83–90.Google Scholar
  11. Davies, D. T., and Law, A. J. R. (1983).J. Dairy Res. 50, 67–75.Google Scholar
  12. Downey, W. K., and Murphy, R. F. (1970).J. Dairy Res. 37, 361–372.Google Scholar
  13. Edsall, J. T., and McKenzie, H. A. (1983).Adv. Biophys. 16, 53–183.CrossRefPubMedGoogle Scholar
  14. Eigel, W. N., Butler, J. E., Ernstrom, C. A., Farrell, H. M., Jr., Harwalkar, V. R., Jenness, R., and Whitney, R. McL. (1984).J. Dairy Sci. 67, 1599–1631.Google Scholar
  15. Farell, H. M., Jr. (1988). Physical equilibria: Proteins, inFundamentals of Dairy Chemistry, 3rd ed. (Wong, N., ed.), Van Nostrand Reinhold, New York, pp. 461–510.Google Scholar
  16. Farrell, H. M., Jr., Kumosinski, T. F., Pulaski, P., and Thompson, M. P. (1988).Arch. Biochem. Biophys. 265, 146–158.CrossRefPubMedGoogle Scholar
  17. Farell, H. M., Jr., Pessen, H., Brown, E. M., and Kumosinski, T. F. (1990).J. Dairy Sci. 73, 3592–3601.Google Scholar
  18. Fox, P. F. (1981).Neth. Milk Dairy J. 35, 233–255.Google Scholar
  19. Groves, M. L., Dower, H. J., and Farrell, H. M., Jr. (1992).J. Protein Chem. 11, 21–28.CrossRefPubMedGoogle Scholar
  20. Holt, C. (1992).Adv. Protein Chem. 43, 63–113.PubMedGoogle Scholar
  21. Holt, C., and Sawyer, L. (1993).J. Chem. Soc. 89, 2683–2690.Google Scholar
  22. Kumosinski, T. F., and Farrell, H. M., Jr. (1991).J. Protein Chem. 10, 3–11.CrossRefPubMedGoogle Scholar
  23. Kumosinski, T. F., Brown, E. M., and Farrell, H. M., Jr. (1993a).J. Dairy Sci. 76, 931–945.PubMedGoogle Scholar
  24. Kumosinski, T. F., Brown, E. M., and Farrell, H. M., Jr. (1993b).J. Dairy Sci. 76, 2507–2520.PubMedGoogle Scholar
  25. Kumosinski, T. F., Brown, E. M., and Farrell, H. M., Jr. (1994a). Three dimensional molecular modeling of bovine caseins: A refined energy minimizedα s1-casein structure, inMolecular Modeling, From Virtual Tools to Real Problems (Kumosinski, T. F., and Liebman, M. N., eds.), ACS Symposium Series, 576 Washington, DC, pp. 368–391.Google Scholar
  26. Kumosinski, T. F., King, G., and Farrell, H. M., Jr. (1994b).J. Protein Chem., this issue.Google Scholar
  27. Kyte, J., and Doolittle, R. F. (1982).J. Mol. Biol. 157, 105–132.PubMedGoogle Scholar
  28. Leaver, J., and Thomson, G. (1993) Milchwissenschaft48, 378–382.Google Scholar
  29. Lin, S. H. C., Leong, S. L., Dewan, R. K., Bloomfield, V. A., and Morr, C. V. (1972).Biochemistry 11, 1818–1821.CrossRefPubMedGoogle Scholar
  30. Mulvihill, D. M., and Fox, P. F. (1979).J. Dairy Res. 46, 641–648.Google Scholar
  31. Noble, R. W., Jr., and Waugh, D. F. (1965).J. Am. Chem. Soc. 87, 2236–2242.CrossRefPubMedGoogle Scholar
  32. Noelken, M. E., Chang, P. J., and Kimmel, J. R. (1980).Biochemistry 19, 1838–1843.CrossRefPubMedGoogle Scholar
  33. Pepper, L. (1972).Biochem. Biophys. Acta 278, 147–155.PubMedGoogle Scholar
  34. Pepper, L., and Farrell, H. M., Jr. (1982).J. Dairy Sci. 65, 2259–2266.Google Scholar
  35. Pessen, H., Kumosinski, T. F., Farrell, H. M., Jr., and Brumberger, H. (1991).Arch. Biochem. Biophys. 284, 133–142.CrossRefPubMedGoogle Scholar
  36. Ribadeau Dumas, B., and Garnier, J. (1970).J. Dairy Res. 37, 269–274.Google Scholar
  37. Rose, D. (1968).J. Dairy Sci. 51, 1897–1902.Google Scholar
  38. Schmidt, D. G. (1982). Associations of caseins and casein micelle structure, inDevelopments in Dairy Chemistry 1 (Fox, P. F., ed.), Applied Science, Essex, England, pp. 61–93.Google Scholar
  39. Schmidt, D. G., and Payens, T. A. J. (1976). Colloidal aspects of casein in surface and colloid science, Vol. 9 (Matijevic, E., ed.), Wiley, New York.Google Scholar
  40. Slattery, C. W., and Evard, R. (1973).Biochem. Biophys. Acta 317, 529–538.Google Scholar
  41. Swaisgood, H. E., Brunner, J. R., and Lillevik, H. A. (1964).Biochemistry 3, 1616–1624.CrossRefGoogle Scholar
  42. Van de Vroot, F. R., Ma, C.-Y., and Nakai, S. (1979).Arch. Biochem. Biophys. 195, 596–603.CrossRefPubMedGoogle Scholar
  43. Visser, S. (1981).Neth. Milk Dairy J. 35, 65–78.Google Scholar
  44. Vreeman, H. J., Brinkhuis, J. A., and Van Der Spek, C. A. (1981).Biophys. Chem. 14, 185–193.PubMedGoogle Scholar
  45. Walstra, P. (1990).J. Dairy Sci. 73, 1965–1979.Google Scholar
  46. Waugh, D. F., and von Hippel, P. H. (1956).J. Am. Chem. Soc. 78, 4576–4582.CrossRefGoogle Scholar
  47. Waugh, D. F., Creamer, L. K., Slattery, C. W., and Dresdner, G. W. (1970).Biochemistry 9, 786–795.CrossRefPubMedGoogle Scholar
  48. Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., and Weiner, P. (1984).J. Am. Chem. Soc. 106, 765–784.CrossRefGoogle Scholar
  49. Weiner, S. J., Kollman, P. A., Nguyen, P. T., and Case, D. A. (1986).J. Comput. Chem. 7, 230–252.CrossRefGoogle Scholar
  50. Woychik, J. H., and Wondolowski, M. V. (1975).J. Dairy Sci. 52, 1669–1670.Google Scholar
  51. Woychik, J. H., Kalan, E. B., and Noelken, M. E. (1966).Biochemistry 5, 2276–2282.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • T. F. Kumosinski
    • 1
  • Gregory King
    • 1
  • H. M. FarrellJr.
    • 1
  1. 1.Eastern Regional Research CenterARS, USDAPhiladelphiaUSA

Personalised recommendations