Advertisement

Convergence of moments and related functional in the general central limit theorem in banach spaces

  • Alejandro de Acosta
  • Evarist Giné
Article

Keywords

Banach Space Stochastic Process Probability Theory Limit Theorem Mathematical Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Acosta, A.: Existence and convergence of probability measures in Banach spaces. Trans. Amer. Math. Soc.152, 273–298 (1970)Google Scholar
  2. 2.
    de Acosta, A.: Exponential moments of vector-valued random series and triangular arrays (To appear in Ann. Probability 1979)Google Scholar
  3. 3.
    de Acosta, A., Araujo, A., Giné, E.: On Poisson measures, Gaussian measures and the central limit theorem in Banach spaces. Advances in Probability,4, 1–68. New York: M. Dekker 1978Google Scholar
  4. 4.
    Agnew, G.: Global versions of the central limit theorem. Proc. Nat. Acad. Sci. USA.40, 800–804 (1954)Google Scholar
  5. 5.
    Araujo, A., Giné, E.: On tails and domains of attraction of stable measures in Banach spaces. To appear in Trans. Amer. Math. Soc. 1979Google Scholar
  6. 6.
    Feller, W.: An introduction to Probability Theory and its applications, Vol. II, Second Edition. New York: Wiley 1971Google Scholar
  7. 7.
    Giné, E., León, J.R.: On the central limit theorem in Hilbert space. Proc. First Conference on Math. at the Service of Man, Barcelona 1977 (To appear in 1979)Google Scholar
  8. 8.
    Hoffmann-Jorgensen, J.: Sums of independent Banach space valued random variables. Studia Math.52, 159–186 (1974)Google Scholar
  9. 9.
    Jain, N.: Central limit theorem and related questions in Banach space. Proceedings of Symposia in Pure Mathematics, Vol. XXI, 55–65. Amer. Math. Soc., Providence, R. I. (1977)Google Scholar
  10. 10.
    Kruglov, V.N.: Convergence of numerical characteristics of sums of independent random variables with values in a Hilbert space. Theor. Probability Appl.18, 694–712 (1973)Google Scholar
  11. 11.
    Kruglov, V.M.: Convergence of numeric characteristics of sums of independent random variables and global limit theorems. Proc. 2nd. Japan-USSR Probability Sympos. Lecture Notes in Math.33, 255–296. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  12. 12.
    Kruglov, V.M.: Global limit theorems. Theor. Probability Appl. XXI, 125–129 (1976)Google Scholar
  13. 13.
    Loève, M.: Probability Theory (2nd. Edition). Princeton: Van Nostrand 1960Google Scholar
  14. 14.
    Maejima, M.: SomeL p versions for the central limit theorem. Ann. Probability6, 341–344 (1978)Google Scholar
  15. 15.
    Marti, J.T.: Introduction to the theory of bases. Berlin-Heidelberg-New York: Springer 1969Google Scholar
  16. 16.
    Maurey, B., Pisier, G.: Séries de variables aléatoires vectorielles independentes et proprietés géométriques des espaces de Banach. Studia Math.58, 45–90 (1976)Google Scholar
  17. 17.
    Parthasarathy, K.R.: Probability measures on metric spaces. New York: Academic Press 1967Google Scholar
  18. 18.
    Petrov, V.V.: Sums of independent random variables. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  19. 19.
    Pisier, G.: Le théoreme de la limite centrale et la loi du logarithme iteré dans les espaces de Banach. Séminaire Maurey-Schwartz 1975, Exp. III (1975)Google Scholar
  20. 20.
    Prohorov, Y.V.: An extremal problem in Probability Theory. Theor. Probability Appl.4, 201–203 (1959)Google Scholar
  21. 21.
    Stout, W.: Almost sure convergence. New York: Academic Press 1974Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Alejandro de Acosta
    • 1
  • Evarist Giné
    • 1
  1. 1.Dept. de MatematicasInstituto Venezolano de Investigaciones CientificasCaracas 101Venezuela

Personalised recommendations