Advertisement

Journal of Protein Chemistry

, Volume 15, Issue 4, pp 389–394 | Cite as

PCR amplification of cDNAs of fish hemoglobin β chains using a consensus primer: cDNA-derived amino acid sequences of β chains from the catfishParasilurus asotus and the scadDecapterus maruadsi

Article

Abstract

Hemoglobinβ chains were isolated from the catfishParasilurus asotus, the scadDecapterus maruadsi, the filefishThamnaconus modestus, and the scorpaenoidSebastiscus marmoratus by reverse-phase chromatography, and the N-terminal sequences were determined. To obtain the complete amino acid sequence, a 20-meric redundant consensus primer based on the N-terminal amino acid sequences of theβ chains was designed. Using this primer and oligo-dT adaptor, we amplified successfully the β-chain cDNAs of about 600 bp from the four fishes. The amplified products fromParasilurus andDecapterus were subcloned in theSmaI site of pUC18 and cDNA-derived amino acid sequences of 147 residues were determined, of which 69 and 76 residues, respectively, were identified by the chemical amino acid sequencing of internal peptides. Thus this PCR methodology using the consensus primer should be widely applicable for amplifying hemoglobinβ chains from teleosts.

Key words

Hemoglobin amino acid sequence catfish (Parasilurus asotusscad (Decapterus maruadsi

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschauer, H., Weber, R. E., and Braunitzer, G. (1985).Biol. Chem. Hoppe-Seyler 366, 589–599.PubMedGoogle Scholar
  2. Barra, D., Petruzzelli, R., Bossa, F., and Brunori, M. (1983).Biochim. Biophys. Acta 742, 72–77.PubMedGoogle Scholar
  3. Chomczynski, P., and Sacchi, N. (1987).Anal. Biochem. 162, 156–159.PubMedGoogle Scholar
  4. D'Avino, R., and Di Prisco, G. (1989).Eur. J. Biochem. 179, 699–705.PubMedGoogle Scholar
  5. D'Avino, R., Caruso, C., Schinina, M. E., Rutigliano, B., Romano, M., Camardella, L., Bosa, F., Barra, D., and Di Prisco, G. (1989).FEBS Lett. 250, 53–56.PubMedGoogle Scholar
  6. Felsenstein, J. (1993). PHYLIP (Phylogeny Inference Package) version 3.5c [Distributed by the author, Department of Genetics, University of Washington, Seattle, Washington].Google Scholar
  7. Feng, D. F., and Doolittle, R. F. (1987).J. Mol. Evol. 25, 351–360.PubMedGoogle Scholar
  8. Fisher, W. K., Nash, A. R., and Thompson, E. O. P. (1977).Aust. J. Biol. Sci. 30, 487–506.PubMedGoogle Scholar
  9. Gorr, T., Kleinschmidt, T., Sgouros, J. G., and Kasang, L. (1991).Biol. Chem. Hoppe-Seyler 372, 599–612.PubMedGoogle Scholar
  10. Grujic-Injac, B., Braunitzer, G., and Stangl, A. (1980).Hoppe-Seyler's Z. Physiol. Chem. 361, 1629–1639.PubMedGoogle Scholar
  11. Huber, F., and Braunitzer, G. (1989a).Biol. Chem. Hoppe-Seyler 370, 245–250.PubMedGoogle Scholar
  12. Huber, F., and Braunitzer, G. (1989b).Biol. Chem. Hoppe-Seyler 370, 831–838.PubMedGoogle Scholar
  13. Lilijeqvist, G., Braunitzer, G., and Paleus, S. (1979).Hoppe-Seyler's Z. Physiol. Chem. 360, 125–135.PubMedGoogle Scholar
  14. Petruzzelli, R., Barra, D., Goffredo, B. M., Bossa, F., Coletta, M., and Brunori, M. (1984).Biochim. Biophys. Acta 789, 69–73.Google Scholar
  15. Rodewald, K., Stangl, A., and Braunitzer, G. (1984).Hoppe-Seyler's Z. Physiol. Chem. 365, 639–649.PubMedGoogle Scholar
  16. Rodewald, K., Oberthur, W., and Braunitzer, G. (1987).Biol. Chem. Hoppe-Seyler 368, 795–805.PubMedGoogle Scholar
  17. Rodewald, K., and Braunitzer, G. (1984).Hoppe-Seyler's Z. Physiol. Chem. 365, 95–104.PubMedGoogle Scholar
  18. Saiki, R. K., Gelfand, D., Stoffel, S., Scharf, S., Higuchi, R., Horn, G., Mullis, K., and Erlich, H. (1988).Science 239, 487–491.PubMedGoogle Scholar
  19. Suzuki, T., Furukohri, T., and Gotoh, T. (1985).J. Biol. Chem. 260, 3145–3154.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  1. 1.Department of Biology, Faculty of ScienceKochi UniversityKochiJapan

Personalised recommendations