Advertisement

Journal of Protein Chemistry

, Volume 15, Issue 1, pp 1–9 | Cite as

Oligophosphopeptides of varied structural complexity derived from the egg phosphoprotein, phosvitin

  • Antonis Goulas
  • E. L. Triplett
  • George Taborsky
Article

Abstract

Phosvitins are the principal phosphoproteins in the eggs of oviparous vertebrates. They have an exceptionally high serine content and most, or even all, of the serine residues are esterified to phosphate. The phosphorylated residues tend to occur in uninterrupted runs of as many as 28 phosphoserines (as inXenopus phosvitin). This unique structural feature gives phosvitins extraordinary properties and can be expected to play a key role in phosvitin function. For example, the concentration of phosphate groups provides for numerous highly efficient metal-binding sites in clusters. The mode of binding had been shown to be affected by the size of the protein and the degree to which serine residues are phosphorylated. For structure-function studies of phosvitins (and other polyphospho-proteins), phosphopeptides of differentiated structural complexity are desirable. Such model peptides were produced in this work by limited proteolysis of chicken phosvitin, and oligophosphopeptides of widely varying sizes, phosphoserine content, and sequence were purified and characterized. These include phosvitin segments containing one, two, or several oligophosphoserine runs, corresponding to segments of the N-terminal, C-terminal, and core sequence of the protein.

Key words

Phosvitin proteolysis phosphopeptide fragments phosphoprotein models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allerton, S. E., and Perlmann, G. E. (1965).J. Biol. Chem. 240, 3892–3898.PubMedGoogle Scholar
  2. Belitz, H.-D. (1963).Z. Lebensm. Unters. Forsch. 119, 381–389.Google Scholar
  3. Belitz, H.-D. (1965).Z. Lebensm. Unters. Forsch. 127, 341–352.Google Scholar
  4. Belitz, H.-D. (1966).Z. Lebensm. Unters. Forsch. 130, 152–157.Google Scholar
  5. Byrne, B. M., van het Schip, A. D., Van De Klundert, J. A. M., Arnberg, A. C., Gruber, M., and Ab, G. (1984).Biochemistry 23, 4275–4279.PubMedGoogle Scholar
  6. Clark, R. C. (1970).Biochem. J. 118, 537–542.PubMedGoogle Scholar
  7. Gerber-Huber, S., Nardelli, D., Haeflinger, J.-A., Cooper, D. N., Givel, F., Germont, J.-E., Engel, J., Green, N. M., and Wahli, W. (1987).Nucleic Acid Res. 15, 4737–4759.PubMedGoogle Scholar
  8. Gray, H. B. (1971).Adv. Chem. 100, 368–389.Google Scholar
  9. Grogan, J., and Taborsky, G. (1986).J. Inorg. Biochem. 26, 237–246.PubMedGoogle Scholar
  10. Grogan, J., and Taborsky, G. (1987).J. Inorg. Biochem. 29, 33–47.PubMedGoogle Scholar
  11. Grogan, J., Shirazi, A., and Taborsky, G. (1990).Comp. Biochem. Physiol. 96B, 655–669.Google Scholar
  12. Hirs, C. H. W., Stein, W. H., and Moore, S. (1954).J. Biol. Chem. 211, 941–950.PubMedGoogle Scholar
  13. Joubert, F. J., and Cook, W. H. (1958).Can. J. Biochem. Physiol. 36, 399–408.PubMedGoogle Scholar
  14. McCollum, K., and Taborsky, G. (1983).Anal. Biochem. 130, 311–320.PubMedGoogle Scholar
  15. Mecham, D. K., and Olcott, H. S. (1949).J. Am. Chem. Soc. 71, 3670–3679.Google Scholar
  16. Spackman, D. H., Stein, W. H., and Moore, S., (1958).Anal. Chem. 30, 1190–1206.Google Scholar
  17. Taborsky, G. (1968).J. Biol Chem. 243, 6014–6020.PubMedGoogle Scholar
  18. Theodoropoulos, D., Bennich, H., Folsch, G., and Mellander, O. (1959a).Nature 184, 187–188.Google Scholar
  19. Theodoropoulos, D., Bennich, H., and Mellander, O. (1959b).Nature 184, 270–271.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Antonis Goulas
    • 1
  • E. L. Triplett
    • 1
  • George Taborsky
    • 1
  1. 1.Department of Biological Sciences, Division of Molecular, Cellular and Developmental BiologyUniversity of CaliforniaSanta Barbara

Personalised recommendations