Journal of Protein Chemistry

, Volume 14, Issue 5, pp 299–308 | Cite as

Fluorescence study ofEscherichia coli cyclic AMP receptor protein

  • Marcin Wasylewski
  • Jedrzej Małecki
  • Zygmunt Wasylewski
Article

Abstract

Time-resolved, steady-state fluorescence and fluorescence-detected circular dichroism (FDCD) have been used to resolve the fluorescence contributions of the two tryptophan residues, Trp-13 and Trp-85, in the cyclic AMP receptor protein (CRP). The iodide and acrylamide quenching data show that in CRP one tryptophan residue, Trp-85, is buried within the protein matrix and the other, Trp-13, is moderately exposed on the surface of the protein. Fluorescence-quenching-resolved spectra show that Trp-13 has emission at about 350 nm and contributes 76–83% to the total fluorescence emission. The Trp-85, unquenchable by iodide and acrylamide, has the fluorescence emission at about 337 nm. The time-resolved fluorescence measurements show that Trp-13 has a longer fluorescence decay time. The Trp-85 exhibits a shorter fluorescence decay time. In the CRP-cAMP complex the Trp-85, previously buried in the apoprotein becomes totally exposed to the iodide and acrylamide quenchers. The FDCD spectra indicate that in the CRP-cAMP complex Trp-85 remains in the same environment as in the protein alone. It has been proposed that the binding of cAMP to CRP is accompanied by a hinge reorientation of two protein domains. This allows for penetration of the quencher molecules into the Trp-85 residue previously buried in the protein matrix.

Key words

CRP cyclic AMP receptor protein Trp fluorescence circular dichroism Escherichia coli 

Abbreviations

CRP

cyclic AMP receptor protein

NATA

N-acetyltryptophanamide

FQRS

fluorescence-quenching-resolved spectra

FDCD

fluorescence-detected circular dichroism

EDTA

ethylenediaminetetraacetic acid

SDS

sodium dodecyl sulfate

FPLC

fast protein liquid chromatography

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcala, J. R., Gratton, E., and Prendergast, F. G. (1987a).Biophys. J. 51, 597–604.Google Scholar
  2. Alcala, J. R., Gratton, E., and Prendergast, F. G. (1987b).Biophys. J. 51, 925–936.Google Scholar
  3. Aiba, H., Fujimoto, S., and Ozaki, N. (1982).Nucleic Acid Res. 10, 1345–1350.Google Scholar
  4. Beechem, J. M., and Brand, L. (1985).Annu. Rev. Biochem. 54, 43–71.Google Scholar
  5. Blazy, B., Baudras, A., and Maurizot, J. C. (1992).Biochim. Biophys. Acta 1120, 223–227.Google Scholar
  6. Cheng, X., Gonzales, M. L., and Lee, J. C. (1993).Biochemistry 32, 8130–8139.Google Scholar
  7. Crombrugghe, B., Busby, S., and Buc, H. (1984).Science 224, 831–838.Google Scholar
  8. Eftink, M. R., Wasylewski, Z., and Ghiron, C. A. (1987).Biochemistry 26, 8338–8346.Google Scholar
  9. Harman, J., McKenney, K., and Petrofsky, A. (1986).J. Biol. Chem. 261, 16332–16339.Google Scholar
  10. Heyduk, T., and Lee, J. C. (1989).Biochemistry 28, 6914–6924.Google Scholar
  11. James, D. R., and Ware, W. R. (1985).J. Phys. Chem. 89, 5450–5458.Google Scholar
  12. Kim, J., Adhya, S., and Garges, S. (1992).Proc. Natl. Acad. Sci. USA 89, 9700–9704.Google Scholar
  13. Kołoczek, H., Waśniowska, A., Potempa, J., and Wasylewski, Z. (1991).Biochim. Biophys. Acta 1073, 619–625.Google Scholar
  14. Lobenstine, E. W., Schaefer, W. C., and Turner, D. H. (1981).J. Am. Chem. Soc. 103, 4936–4940.Google Scholar
  15. Luisi, B., and Siegler, P. (1990).Biochim. Biophys. Acta 1048, 113–126.Google Scholar
  16. Rosato, N., Gratton, E., Mei, G., and Finanzi-Agro, A. (1990).Biophys. J. 58, 817–822.Google Scholar
  17. Ryu, S., Kim, J., Adhya, S., and Garges, S. (1993).Proc. Natl. Acad. Sci. USA 90, 75–79.Google Scholar
  18. Schultz, S., Shields, G., and Steitz, T. (1991).Science 253, 1001–1007.Google Scholar
  19. Stryjewski, W., and Wasylewski, Z. (1986).Eur. J. Biochem. 172, 719–724.Google Scholar
  20. Tan, G., Kelly, P., Kim, J., and Wartell, R. W. (1991).Biochemistry 30, 5076–5080.Google Scholar
  21. Wasylewski, Z., and Eftink, M. R. (1987a).Eur. J. Biochem. 167, 513–518.Google Scholar
  22. Wasylewski, Z., and Eftink, M. R. (1987b).Biochim. Biophys. Acta 915, 331–341.Google Scholar
  23. Wasylewski, Z., Kołoczek, H., and Waśniowska, A. (1988).Eur. J. Biochem. 172, 719–724.Google Scholar
  24. Wasylewski, Z., Kołoczek, H., Waśniowska, A., and Ślizowska, K. (1992).Eur. J. Biochem. 206, 235–242.Google Scholar
  25. Weber, I., and Steitz, T. (1987).J. Mol. Biol. 198, 311–326.Google Scholar
  26. Wu, C., and Wu, F. (1974).Biochemistry 13, 2573–2578.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Marcin Wasylewski
    • 1
  • Jedrzej Małecki
    • 1
  • Zygmunt Wasylewski
    • 1
  1. 1.Department of Physical Biochemistry, Institute of Molecular BiologyJagiellonian UniversityKrakówPoland

Personalised recommendations