Molecular Engineering

, Volume 6, Issue 3, pp 239–248 | Cite as

Electronic structures of donor-acceptor polymers based on polythiophene, polyfuran and polypyrrole

  • A. K. Bakhshi
  • Yoichi Yamaguchi
  • Hiroki Ago
  • Tokio Yamabe
Article

Abstract

Theoretical results on the geometric and electronic structures of some donor-acceptor polymers based on polythiophene (X=S), polyfuran (X=O) and polypyrrole (X=NH) were obtained, using a one-dimensional tight-binding self-consistent field crystal-orbital (SCF-CO) method at the MNDO-AM1 level of approximation. The repeat unit of these polymers consits of a bithiophene, furan or bipyrrole unit bridged by an electron-accepting group
or
. The optimized geometries of the polymers show a strong dependence on the nature of the electron donating group X. All the polymers studied are predicted to have band gap values ranging between 1 eV and 2 eV. An analysis of their π-bond order data and of the patterns of their frontier orbitals shows they have benzenoid-like electronic structures.

Key words

Electron donor-acceptor moieties crystal orbitals polythiophene polyfuran polypyrrole 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger:J. Chem. Soc. Chem. Commun. 578 (1977).Google Scholar
  2. 2.
    C. K.Chiang, C. R.FuncherJr., Y. W.Park, A. J.Heeger, H.Shirakawa, E. J.Louis, S. C.Gan, and A. G.MacDiarmid:Phys. Rev. Lett. 39, 1098 (1977).Google Scholar
  3. 3.
    C. K.Chiang, M. A.Druy, S. C.Gan, A. J.Heeger, E. J.Louis, A. G.MacDiarmid, Y. W.Park and H.Shirakawa:J. Am. Chem. Soc. 100, 1013 (1978).Google Scholar
  4. 4.
    See, for instance, T. A.Skotheim (Eds.):Handbook of Conducting Polymers, Marcel Dekker, New York (1986); A. K. Bakhshi,Annual Reports of the Royal Society, Section C 89, 147 (1992).Google Scholar
  5. 5.
    E. E.Havinga, W.tenHoeve, and H.Wynberg:Synth. Met. 55, 299 (1993).Google Scholar
  6. 6.
    E. E.Havinga, W.tenHoeve, and H.Wynberg:Synth. Met. 29, 119 (1992).Google Scholar
  7. 7.
    A. J. W.Toe:J. Chem. Phys. 100, 8463 (1994).Google Scholar
  8. 8.
    T. L. Lambert and J. P. Ferraris:J. Chem. Soc. Chem. Commun. 752 (1991).Google Scholar
  9. 9.
    J. P. Ferraris and T. L. Lambert:J. Chem. Soc. Chem. Commun. 1268 (1991).Google Scholar
  10. 10.
    J. M.Toussaint and J. L.Brédas:Synth. Met. 61, 103 (1993).Google Scholar
  11. 11.
    J. M.Toussaint and J. L.Brédas:Synth. Met. 69, 637 (1995).Google Scholar
  12. 12.
    J. J. P. Stewart:Quantum Chemistry Program Exchange, Program No. 455, Indiana University, Bloomington, Indiana, USA.Google Scholar
  13. 13.
    M.Kertész:Adv. Quantum Chem. 15, 161 (1982).Google Scholar
  14. 14.
    A. K. Bakhshi, Y. Yamaguchi, and T. Yamabe: unpublished results.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • A. K. Bakhshi
    • 1
    • 2
    • 3
  • Yoichi Yamaguchi
    • 2
    • 4
  • Hiroki Ago
    • 1
  • Tokio Yamabe
    • 1
    • 2
  1. 1.Division of Molecular Engineering, Faculty of EngineeringKyoto UniversityKyotoJapan
  2. 2.Institute for Fundamental ChemistryKyotoJapan
  3. 3.Department of ChemistryPanjab UniversityChandigarhIndia
  4. 4.Osaka R&D LaboratoriesSumitomo Electric Industries, Ltd.OsakaJapan

Personalised recommendations