Advertisement

Exponential estimates for the maximum of partial sums. II (Random fields)

  • F. Móricz
Article

Keywords

Random Field Exponential Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Alexits,Convergence problems of orthogonal series, Pergamon Press and Akadémiai Kiadó (Budapest, 1961).Google Scholar
  2. [2]
    K. Azuma, Weighted sums of certain dependent random variables,Tôhoku Math. J.,19 (1967), 357–367.Google Scholar
  3. [3]
    F. Móricz, Exponential estimates for the maximum of partial sums. I (Sequences of rv's),Acta Math. Acad. Sci. Hungar.,33 (1979), 159–167.Google Scholar
  4. [4]
    W. J. Park, On Strassen's version of the law of the iterated logarithm for the two-parameter Gaussian process,J. Multivariate Anal.,4 (1974), 479–485.Google Scholar
  5. [5]
    R. Pyke, Partial sums of matrix arrays and brownian sheets, in: “Stochastic Geometry and Stochastic Analysis” (E. F. Farding and D. G. Kendell, Eds.), Wiley, (New York, (1972).Google Scholar
  6. [6]
    P. Révész, A note to a paper of S. Takahashi,Studia Sci. Math. Hungar.,7 (1972), 25–26.Google Scholar
  7. [7]
    S. Takahashi, Notes on the law of the iterated logarithm,Studia Sci. Math. Hungar.,7 (1972), 21–24.Google Scholar
  8. [8]
    G. J. Zimmerman, Some sampe function properties of the two-parameter Gaussian process,Ann. Statist.,4 (1972), 1235–1246.Google Scholar

Copyright information

© Akadémiai Kiadó 1980

Authors and Affiliations

  • F. Móricz
    • 1
  1. 1.Bolyai InstituteJózsef Attila UniversitySzeged

Personalised recommendations