Exponential estimates for the maximum of partial sums. II (Random fields)

  • F. Móricz
Article

Keywords

Random Field Exponential Estimate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Alexits,Convergence problems of orthogonal series, Pergamon Press and Akadémiai Kiadó (Budapest, 1961).Google Scholar
  2. [2]
    K. Azuma, Weighted sums of certain dependent random variables,Tôhoku Math. J.,19 (1967), 357–367.Google Scholar
  3. [3]
    F. Móricz, Exponential estimates for the maximum of partial sums. I (Sequences of rv's),Acta Math. Acad. Sci. Hungar.,33 (1979), 159–167.Google Scholar
  4. [4]
    W. J. Park, On Strassen's version of the law of the iterated logarithm for the two-parameter Gaussian process,J. Multivariate Anal.,4 (1974), 479–485.Google Scholar
  5. [5]
    R. Pyke, Partial sums of matrix arrays and brownian sheets, in: “Stochastic Geometry and Stochastic Analysis” (E. F. Farding and D. G. Kendell, Eds.), Wiley, (New York, (1972).Google Scholar
  6. [6]
    P. Révész, A note to a paper of S. Takahashi,Studia Sci. Math. Hungar.,7 (1972), 25–26.Google Scholar
  7. [7]
    S. Takahashi, Notes on the law of the iterated logarithm,Studia Sci. Math. Hungar.,7 (1972), 21–24.Google Scholar
  8. [8]
    G. J. Zimmerman, Some sampe function properties of the two-parameter Gaussian process,Ann. Statist.,4 (1972), 1235–1246.Google Scholar

Copyright information

© Akadémiai Kiadó 1980

Authors and Affiliations

  • F. Móricz
    • 1
  1. 1.Bolyai InstituteJózsef Attila UniversitySzeged

Personalised recommendations