On the Cauchy problem for non-linear systems of partial differential-functional equations of the first order

  • Z. Kamont
Article
  • 29 Downloads

Keywords

Cauchy Problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Adamus-Kulczycka, Global existence for non-linear partial differential equations of the first order,Ann. Polon. Math.,27 (1973), 257–264.Google Scholar
  2. [2]
    C. Z. Azamatov, On the correctness of the Cauchy problem for some partial differential equations with a deviated argument, (Russian),Differen. Urav.,XI,12 (1975), 2196–2204.Google Scholar
  3. [3]
    C. N. Bołkovoi, J. I. Zitomirskii, On the Cauchy problem for involutory functional equations, (Russian),Differen. Urav.,X,11 (1974), 2021–2028.Google Scholar
  4. [4]
    M. I. Hazan, On the global existence of a continuous solution of an initial-boundary problem for quasilinear equations of the first order, (Russian),Differen. Urav.,X,8 (1974), 1478–1485.Google Scholar
  5. [5]
    E. Kamke,Differentialgleichungen II (Leipzig, 1965).Google Scholar
  6. [6]
    Z. Kamont, On the Cauchy problem for linear partial differential-functional equations of the first order,Ann. Polon. Math.,35 (1977), 27–48.Google Scholar
  7. [7]
    Z. Kamont, On the existence and uniqueness of solutions of the Cauchy problem for linear partial differential-functional equations of the first order,Math. Nachr.,80 (1977), 183–200.Google Scholar
  8. [8]
    Z. Kamont, On the Cauchy problem for non-linear partial differential-functional equations of the first order,Math. Nachr.,88 (1979), 13–29.Google Scholar
  9. [9]
    V. Lakshmikantham, S. Leela,Differential and Integral Inequalities (New York—London, 1969).Google Scholar
  10. [10]
    J. Szarski, Generalized Cauchy problem for differential-functional equations with first order partial derivatives,Bull. Acad. Polon. Sci.,24 (1976), 576–580.Google Scholar
  11. [11]
    W. Walter,Differential and Integral Inequalities, Springer-Verlag (1970).Google Scholar
  12. [12]
    T. Wazewski, Sur le domaine d'existence des intégrales de l'équation aux dérivées partielles du premier ordre,Ann. Soc. Polon. Math.,13 (1934), 1–9.Google Scholar
  13. [13]
    K. Zima, Sur les équations aux derivées partielles du premier ordre à argument fonctionnel,Ann. Polon. Math.,22 (1969), 49–59.Google Scholar
  14. [14]
    K. Zima, On a differential inequality with a lagging argument,Ann. Polon. Math.,18 (1966), 227–233.Google Scholar

Copyright information

© Akadémiai Kiadó 1980

Authors and Affiliations

  • Z. Kamont
    • 1
  1. 1.Institute of Mathematics University of GdanskGdanskPoland

Personalised recommendations