Advertisement

Extremal properties of Padé quotients

Article

Keywords

Extremal Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    O. Perron,Die Lehre von den Kettenbrüchen,2 Teubner (Stuttgart, 1957).Google Scholar
  2. [2]
    H. S. Wall,Analytic theory of continued fractions, Van Nostrand (Princeton, 1948).MATHGoogle Scholar
  3. [3]
    R. Nevanlinna, Asymptotische Entwicklungen beschränkter Funktionen und das Stieltjes'sche Momentenproblem,Ann. Acad. Sci. Fenn., Ser. A,18 (1922).Google Scholar
  4. [4]
    H. Hamburger, Über eine Erweiterung des Stieltjes'schen Momentenproblems,Math. Ann.,81 (1920), pp. 235–319;82 (1921), pp. 120–164, 168–187.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    T. J. Stieltjes, Recherches sur les fractions continues,Ann. Fac. Sci. Toulouse,8 (1894), pp. 1–122;9 (1895), pp. 1–47.MathSciNetCrossRefGoogle Scholar
  6. [6]
    H. Padé, Sur la représentation approchée d'une fonction par des fractions rationnelles,Ann. Sci. Ecole Norm. Sup.,9 (1892) (Supplément), pp. 1–93.Google Scholar
  7. [7]
    H. S. Wall, On the Padé approximants associated with a positive definite power series,Trans. Amer. Math. Soc.,33 (1931), pp. 511–532.MathSciNetMATHGoogle Scholar
  8. [8]
    E. B. Van Vleck, On an extension of the 1894 memoir of Stieltjes,Trans. Amer. Math. Soc.,4 (1903), pp. 297–332.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    H. S. Wall, On the Padé approximants associated with the continued fraction and series of Stieltjes,Trans. Amer. Math. Soc.,31 (1929), pp. 91–116.MathSciNetMATHGoogle Scholar
  10. [10]
    P. Wynn, Upon the Padé table derived from a Stieltjes series,SIAM Jour. Numer. Anal.,5 (1968), pp. 805–834.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    P. Wynn, Upon a convergence result in the theory of the Padé table,Trans. Amer. Math. Soc.,165 (1972), pp. 239–249.MathSciNetMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó 1974

Authors and Affiliations

  • P. Wynn
    • 1
  1. 1.Mathematical Research CentreUniversity of MontrealMontreal 101Canada

Personalised recommendations