Climatic Change

, Volume 1, Issue 2, pp 173–190 | Cite as

Climate and the changing sun

  • John A. Eddy


Long-term changes in the level of solar activity are found in historical records and in fossil radiocarbon in tree-rings. Typical of these changes are the Maunder Minimum (A.D. 1645–1715), the Spörer Minimum (A.D. 1400–1510), and a Medieval Maximum (c. A.D. 1120–1280). Eighteen such features are identified in the tree-ring radiocarbon record of the past 7500 years and compared with a record of world climate. In every case when long-term solar activity falls, mid-latitude glaciers advance and climate cools; at times of high solar activity glaciers recede and climate warms. We propose that changes in the level of solar activity and in climate may have a common cause: slow changes in the solar constant, of about 1% amplitude.


Solar Activity Historical Record Climate Warm Slow Change Maunder Minimum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abbot C. G. (1953): ‘Periodic Solar Variation’,Smithsonian Misc. Collections,128, (4); (1952): ‘Periodicities in Solar-Constant Measures’ibid. 117 (10); (1947) ‘A Revised Analysis of Solar Constant Values’,ibid. 107 (10).Google Scholar
  2. [2]
    Sterne, T. E. and Dieter, N. (1958): ‘The Constancy of the Solar Constant’,Smithsonian Contrib. to Astrophysics,3, 9–12.Google Scholar
  3. [3]
    Foukal, P. V., Mack, P. E. and Vernazza, J. E. (1977): ‘The Effect of Sunspots and Faculae on the Solar Constant’,Astrophys. J.,215,952–959.Google Scholar
  4. [4]
    Fröhlich, C. (1977): ‘Contemporary Measures of the Solar Constant’, inThe Solar Output and its Variation, O. R. White, Ed., Univ. of Colorado Press, Boulder, 93–109.Google Scholar
  5. [5]
    Wilcox, J. M., Scherrer, P. H., Svalgaard, L., Roberts, W. O. and Olson, R. H. (1973): ‘Solar Magnetic Sector Structure: Relation to Circulation of the Earth's Atmosphere’,Science 180, 185–186. Olson, R. H., Roberts, W. O. and Zerefos, C. S. (1975): ‘Short Term Relationship between Solar Flares, Geomagnetic Storms, and Tropospheric Vorticity Patterns’,Nature 257, 113–115.Google Scholar
  6. [6]
    Angione, R. J., Medeiros, E. J. and Roosen, R. G. (1976): ‘Stratospheric Ozone as Viewed from the Chappuis Band’,Nature 261, 289–290. Heath, D. F., Krueger, A. J. and Crutzen, P. J. (1977): ‘Influence of a Solar Proton Event on Stratospheric Ozone’,Science, in press. Crutzen, P. J., Isaacson, I. S. A. and Reid, G. C. (1975): ‘Solar Proton Events: Stratospheric Source of Nitric Oxide’,Science 189, 457–459. Crutzen, P. J. (1977): ‘Stratosphere and Mesosphere’ in theSolar Output and its Variation, O. R. White, Ed., Univ. of Colorado Press, Boulder, 13–16.Google Scholar
  7. [7]
    Eddy, J. A. (1976): ‘The Maunder Minimum’,Science 192, 1189–1202.Google Scholar
  8. [8]
    Eddy, J. A. (1977): ‘The Case of the Missing Sunspots’,Sci. Amer. 236, 80–92.Google Scholar
  9. [9]
    Gates, W. L. and Mintz, Y. (1975):Understanding Climate Change, National Acad. of Science, Appendix A.Google Scholar
  10. [10]
    La Marche, V. C. (1974): ‘Paleoclimatic Inferences from Long Tree-Ring Records’,Science 183, 1043–1048.Google Scholar
  11. [11]
    Lingenfelter, R. E. (1963): ‘Production of Carbon 14 by Cosmic-Ray Neutrons’,Reviews of Geophysics 1, 35–55.Google Scholar
  12. [12]
    Simpson, J. A. and Wang, J. R. (1970): ‘The Eleven-year and Residual Solar Modulation of Cosmic Rays (1952–1969)’,Astrophys. J. 161, 265–288.Google Scholar
  13. [13]
    Damon, P.E. (1970): ‘Climatic versus Magnetic Perturbation of the Atmospheric C14 Reservoir’, inRadiocarbon Variations and Absolute Chronology, Nobel Symposium 12, I. U. Olsson, Ed., Almquist and Wiksell, Stockholm, 571–593.Google Scholar
  14. [14]
    Grey, D. C. and Damon, P. E. (1970): ‘Sunspots and Radiocarbon Dating in the Middle Ages’, inScientific Methods in Medieval Archaeology, R. Berger, Ed., Univ. of California Press, Berkeley, 167–182.Google Scholar
  15. [15]
    Bucha, V. (1969): ‘Changes of the Earth's Magnetic Moment and Radiocarbon Dating’,Nature 224, 681–683; (1970): ‘Influence of the Earth's Magnetic Field on Radiocarbon Dating’, inRadiocarbon Variations and Absolute Chronology, Nobel Symposium 12, I. U. Olsson, Ed., Almquist and Wiksell, Stockholm, 571–593.Google Scholar
  16. [16]
    Suess, H. E. (1970): ‘The Three Causes of the Secular C14 Fluctuations, Their Amplitudes and Time Constants’, inRadiocarbon Variations and Absolute Chronology, Nobel Symposium 12, I. U. Olsson, Ed., Almquist and Wiksell, Stockholm, 595–605.Google Scholar
  17. [17]
    Damon, P. E., (1977): ‘Solar Induced Variations of Energetic Particles at One AU’, inThe Solar Output and its Variation, O. R. White, Editor, Univ. of Colorado Press, 429–448.Google Scholar
  18. [18]
    Lin, Y. C., Fan, C. Y., Damon, P. E. and Wallick, E. J. (1975): ‘Long Term Modulation of Cosmic-ray Intensity and Solar Activity Cycle’,14th Int. Cosmic Ray Conf., München 3, 995–999.Google Scholar
  19. [19]
    Stuiver, M. (1961): ‘Variations in Radiocarbon Concentration and Sunspot Activity’,J. Geophys. Res. 66, 273–276.Google Scholar
  20. [20]
    Stuiver, M. (1965): ‘Carbon-14 Content of 18th and 19th Century Wood: Variations Correlated with Sunspot Activity’,Science 149, 533–535.PubMedGoogle Scholar
  21. [21]
    Bray, J. R. (1967): ‘Variation in Atmospheric Carbon-14 Activity Relative to a Sunspot-auroral Solar Index’,Science 156, 640–642.Google Scholar
  22. [22]
    Suess, H. E. (1965): ‘Secular Variations of the Cosmic-ray-produced Carbon 14 in the Atmosphere and their Interpretations’,J. Geophys. Res. 70, 5937–5952.Google Scholar
  23. [23]
    Suess, H. E. (1968): ‘Climate Changes, Solar Activity, and the Cosmic-ray Production Rate of Natural Radiocarbon’,Meteor. Mon. 8, 146–150.Google Scholar
  24. [24]
    Damon, P. E. (1975): Private communication.Google Scholar
  25. [25]
    Eddy, J. A. (1977): ‘Historical Evidence for the Existence of the Solar Cycle’, inThe Solar Output and its Variation, O. R. White, Editor, Univ. of Colorado Press, Boulder, 51–71.Google Scholar
  26. [26]
    Maunder, E. W. (1890): ‘Professor Spoerer's Research on Sunspots’,Monthly Notices Roy. Astron. Soc. 50, 251–252; (1894): ‘A Prolonged Sunspot Minimum’,Knowledge 17, 173.Google Scholar
  27. [27]
    Wolf, R. (1856): ‘Neue Untersuchungen Uber die Periode der Sonnenflecken’,Astron. Mitt Zürich No. 1, pp. V–XXVI.Google Scholar
  28. [28]
    Wolf, R. (1868): ‘Beobachtungen der Sonnenflecken’,Astron. Mitt Zürich, No. 24, pp. 103–152.Google Scholar
  29. [29]
    Waldmeier, M. (1961):The Sunspot Activity in the Years 1610–1960, 171 pp, Schulthess & Co., Zürich.Google Scholar
  30. [30]
    Eddy, J. A., Gilman, P. A. and Trotter, D. E. (1976): ‘Solar Rotation during the Maunder Minimum’,Solar Phys. 46, 3–14.Google Scholar
  31. [31]
    Eddy, J. A., Gilman, P. A. and Trotter, D.E. (1977): ‘Anomalous Solar Rotation during the XVII Century’,Science, in press.Google Scholar
  32. [32]
    Bray, J. R. (1968): ‘Glaciation and Solar Activity since the Fifth Century BC and the Solar Cycle’,Nature 220, 672–674.Google Scholar
  33. [33]
    Bray, J. R. (1970): ‘Temporal Patterning of Post-pleistocene Glaciation’,Nature 228, 353.Google Scholar
  34. [34]
    Bray, J. R. (1971): ‘Solar-climate Relationships in the Post-pleistocene’,Science 171, 1242–1243.Google Scholar
  35. [35]
    Mitchell, J. M., Jr. (1976): ‘An Overview of Climatic Variability and Its Causal Mechanisms’,Quaternary Research 6, 481–493.Google Scholar
  36. [36]
    Eddy, J. A. (1975): ‘A New Look at Solar-Terrestrial Relations’,Bull. Amer. Astron. Soc. 7, 410.Google Scholar
  37. [37]
    Lamb, H. H. (1972):Climate: Present, Past, and Future, Vol. 1, Methuen.Google Scholar
  38. [38]
    Le Roy Ladurie, E. (1967):Histoire du Climat depuis l'an mil. Flammarion, Paris (translated by B. Bray, Doubleday and Co., 1971).Google Scholar
  39. [39]
    Denton, G. H. and Karlén, W. (1973): ‘Holocene Climatic Variations - Their Pattern and Possible Cause’,Quaternary Research 3, 155–205.Google Scholar
  40. [40]
    Bray, J. R. (1965): ‘Forest Growth and Glacier Chronology in North-West North America in Relation to Solar Activity’,Nature 205, 440–443.Google Scholar
  41. [41]
    Bray, J. R. (1971): ‘Vegetational Distribution, Tree Growth and Crop Success in Relation to Recent Climatic Change’,Adv. Ecol. Res. 7, 177Google Scholar
  42. [42]
    Öpik, E. (1968): ‘Climatic Change and the Onset of the Ice Ages’,Irish Astron. J. 8, 153–157.Google Scholar
  43. [43]
    Stix, M. (1976): inBasic Mechanisms of Solar Activity, V. Bumba and J. Kleczek, eds., I.A.U. Symposium No. 71, p. 367. D. Reidel Co., Dordrecht-Holland.Google Scholar
  44. [44]
    Howard, R. (1976): ‘A Possible Variation of the Solar Rotation with the Activity Cyclxe’,Astrophys. J. 210, L159-L161.Google Scholar
  45. [45]
    Fritz, H. (1873):Verzeichniss Beobachter Polarlichter, C. Gerold's Sohn, Vienna.Google Scholar
  46. [46]
    Gray, J. and Thompson, P. (1976): ‘Climatic Information from18O/16O Ratios of Cellulose in Tree Rings’,Nature 262, 481–482.Google Scholar
  47. [47]
    Fritts, H. C. (1977):Tree Rings and Climate, Academic Press, London 562 pp; (1972): ibid,Sci. American 226, 92–100.Google Scholar

Copyright information

© D. Reidel Publishing Company 1977

Authors and Affiliations

  • John A. Eddy
    • 1
  1. 1.Center for Astrophysics, Harvard College Observatory and Smithsonian Astrophysical ObservatoryCambridgeUSA

Personalised recommendations