Skip to main content
Log in

Some problems of carotenoid formation in photosynthetic tissues

  • III. Caroténoides
  • Published:
Qualitas Plantarum et Materiae Vegetabiles Aims and scope Submit manuscript

Summary

1. Information available on the nature, location in the cell, and distribution of carotenoids in the photosynthetic tissues of higher plants, in algae and in the photosynthetic bacteria is outlined.

2. The effects of light and temperature on carotenogenesis are discussed in some detail.

3. The mechanism of carotenogenesis has been discussed from the points of view of the three main outstanding problems: (a) the nature of the basic monomer; (b) the nature of the primitive C40 precursor and (c) the insertion of the oxygen function to produce xanthophylls.

Résumé

Rappel des données acquises sur la nature, la localisation dans la cellule et la distribution des caroténoïdes dans les tissus photosynthétiques des plantes supérieures, des algues et des bactéries photosynthétiques. Les effect de lumière et de température sur la caroténogenèse sont examinés en détail. Le mécanisme de la caroténogenèse a été discuté en partant des trois problèmes principaux: (a) la nature du monomère initial; (b) la nature du précurseur primaire en C40; (c) l'introduction de la fonction oxhydrile déterminant la formation de xanthophylle.

Zusammenfassung

Die bekannten Daten über Natur, Lokalisierung in der Zelle, und Verbreitung von Karotinoïden in den der Photosynthese dienenden Geweben der höheren Pflanzen, der Algen und der photosynthetischen Bakterien werden erwähnt. Die Einflüsse des Lichtes und der Temperatur auf die Karotinoïdbildung werden eingehend besprochen. Der Mechanismus der Karotinoïdbildung wurde diskutiert, ausgehend von drei Gesichtspunkten: a) von der Natur des Monomers, das die Grundsubstanz bildet; b) von der Natur des ersten Vorproduktes C40; c) von dem Einbau von OH-Gruppen in das Molekul, um Xanthophylle zu bilden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bandurski, R. S., 1949. Synthesis of carotenoid pigments in detached bean leaves;Botan. Gaz., 111,95–109.

    Google Scholar 

  • Bandurski, R. S., F. M. Scott, M. Pflug &F. W. Went, 1953. The effect of temperature on the colour and anatomy of the tomato leaves;Amer. J. Bot., 40,41–46.

    Google Scholar 

  • Barrenscheen, H. K., J. Pany &E. Srb, 1942. Synthetische Leistung des Keimlings. 1 Mitteilung. Die Bildung von Ascorbinsäure und der Carotinoide in etiolierten Weizenkeimlingen;Biochem. Z., 310,285–291.

    Google Scholar 

  • Blaauw-Jansen, G., J. G. Komen &J. B. Thomas, 1950. On the relation between the formation of assimilatory pigments and the rate of photosynthesis in etiolated oat seedlings;Biochem. Biophys. Acta, 5,179–185.

    PubMed  Google Scholar 

  • Bloch, K., In „Essays in Biochemistry” Ed.S. Graff. New York. J. Wiley, 1956.

    Google Scholar 

  • Braithwaite, G. D. &T. W. Goodwin, 1957a. Unpublished observations.

  • Braithwaite, G. D. &T. W. Goodwin, 1957b. Mevalonic acid and carotenogenesis inPhycomyces blakesleeanus. Biochem. J. (In the press).

  • Chichester, C. O., T. Nakayama, G. Mackinney &T. W. Goodwin, 1955. On the incorporation of leucine-carbon into carotene byPhycomyces;J. biol. Chem., 214,515–568.

    PubMed  Google Scholar 

  • Claes, H., 1954. Analyse der biochemischen Synthesekette für Carotinoide mit Hilfe vonChlorella - Mutanten;Z, Naturforsch., 9b,462–469.

    Google Scholar 

  • Claes, H., 1956. Biosynthese von Carotinoiden beiChlorella;Z. Naturforsch., 11b,260–266.

    Google Scholar 

  • Coon, M. J., W. G. Robinson &B. K. Bachhawat, 1955. Enzymatic studies on the biological degradation of the branched chain amino acids. In „Amino Acid Metabolism” Ed.W. D. McElroy &H. B. Glass. Baltimore. Johns Hopkins Press p. 431.

    Google Scholar 

  • Cornforth, J. W., R. H. Cornforth, G. Popják &I. Youhotsky-Gore, 1954. Biosynthesis of squalene and cholesterol fromDL-β-methyl-S-(2-14e)-valerolactone;Biochem. J., 66,100.

    Google Scholar 

  • Eugster, C. H., E. Linner, A. H. Trivedi &P. Karrer, 1956. Carotinoidsynthesen XIX. Synthese eines 6,7,6′,7′-tetra-hydrolycopins und dessen Beziehung Neurosporin;Helv. Chim. Acta., 39,690–698.

    Google Scholar 

  • Frank, S., 1951. The relation between carotenoid and chlorphyll pigments inAvena coleoptiles;Arch. Biochem., 30,52–61.

    PubMed  Google Scholar 

  • Glover, J. &E. R. Redfearn, 1953. Biosynthesis of14(C)-β-carotene;Biochem. J., 54, viii.

    Google Scholar 

  • Goodwin, T. W., 1952. The Comparative Biochemistry of the Carotenoids; London, Champan & Hall. pp. 356.

    Google Scholar 

  • Goodwin, T. W., 1954. Some observations on carotenoid synthesis by the algaChlorella vulgaris;Experientia, 10,213.

    PubMed  Google Scholar 

  • Goodwin, T. W., 1955a. The nature, biosynthesis and function of the carotenoids in the photosynthetic bacteria;Souvenir Soc. Biol. Chemists India, 271–276.

  • Goodwin, T. W., 1955b. Carotenoids;Ann. Rev. Biochem., 24,497–522.

    PubMed  Google Scholar 

  • Goodwin, T. W., 1957. Unpublished observations.

  • Goodwin, T. W., 1958a. In Handbook of Plant Physiology, Springer. Heidelberg Volumes 5 and 10. (In the press).

  • Goodwin, T. W., 1958b. Studies in carotenogenesis 24. The changes in carotenoid and chlorophyll pigments in the leaves of deciduous trees during autumn necrosis.Biochem. J., 68,503–511.

    PubMed  Google Scholar 

  • Goodwin, T. W. &M. Jamikorn, 1954. Studies in Carotenogenesis. Some observations on carotenoid synthesis in two varieties ofEuglena gracilis;J. Protozool., 1,216–219.

    Google Scholar 

  • Goodwin, T. W. &D. G. Land, 1956. Studies in carotenogenesis 20. Carotenoids of some species ofChlorobium;Biochem. J., 62,553–556.

    PubMed  Google Scholar 

  • Goodwin, T. W., D. G. Land &H. G. Osman, 1955. Studies in carotonogenesis 14. Carotenoid biosynthesis in the photosynthetic bacteriumRhodopseudomonas spheroides;Biochem. J., 59,491–496.

    PubMed  Google Scholar 

  • Goodwin, T. W., D. G. Land &M. E. Sissins, 1956. Studies in carotenogenesis 23. The nature of the carotenoids in the photosynthetic bacteriumRhodopseudomonas spheroides (Athiorhodaceae);Biochem., 64,486–492.

    Google Scholar 

  • Goodwin, T. W. &W. Lijinsky, 1951. Carotene production byPhycomyces blakesleeanus: the effect of different amino acids when used in media containing low concentrations of glucose;Biochem. J., 50,268–273.

    PubMed  Google Scholar 

  • Goodwin, T. W., W. Lijinsky &J. S. Willmer, 1953. The effect of some possible β-carotene precursors on growth, lipogenesis and carotenogenesis in the fungusPhycomyces blakesleeanus;Biochem. J., 53,208–212.

    PubMed  Google Scholar 

  • Goodwin, T. W. &H. G. Osman, 1953. Studies in carotenogenesis 9. General cultural conditions controlling carotenoid (spirilloxanthin) synthesis in the photosynthetic bacteriumRhodospirillum rubrum;Biochem. J., 53,541–546.

    PubMed  Google Scholar 

  • Goodwin, T. W. &H. G. Osman, 1954. Studies in carotenogenesis 10. Spirilloxanthin synthesis by washed cells ofRhodospirillum rubrum;Biochem. J., 56,222–230.

    PubMed  Google Scholar 

  • Griffiths, M., W. R. Sistrom, G. Cohen-Bazire &R. Y. Stanier, 1955. Function of carotenoids in photosynthesis;Nature, 176,1211–1215.

    PubMed  Google Scholar 

  • Grob, E. C. &R. Bütler, 1955. Neues über die Beteiligung der Essigsäure am Aufbau des β-carotins;Chimia, 10, 258-9.

    Google Scholar 

  • Jeffrey, R. N. &R. B. Griffith, 1947. Changes in the chlorophyll and carotene contents of curing burley tobacco cut at different stages of maturity;Plant Physiol., 22,34–41.

    Google Scholar 

  • Kay, R. E. &B. Phinney, 1956. Plastid pigment changes in the early seedling leaves ofZea mays L.Plant Physiol., 31,226–231.

    Google Scholar 

  • Koe, B. K. &L. Zechmeister, 1952.In vitro conversion of phytofluene and phytoene into carotenoid pigments;Arch. Biochem. Biophys., 41,236–238

    PubMed  Google Scholar 

  • Mackinney, G. 1958. This volume p. 281.

  • Moster, J. B. &F. W. Quackenbush, 1952. The effect of temperature and light on the carotenoids of seedlings grown from three corn hybrids;Arch. Biochem. Biophys., 38,297–303.

    PubMed  Google Scholar 

  • Porter, J. W. &R. E. Lincoln, 1950.Lypersicon selections containing a high content of carotenes and colourless polyenes. The mechanisms of carotene biosynthesis;Arch. Biochem., 27,390–403.

    PubMed  Google Scholar 

  • Porter, J. W., F. W. Strong, R. A. Brink &N. R. Neal, 1946. Carotene content of the corn plant;J. Agric. Res., 72,169–187.

    Google Scholar 

  • Rabourn, W. J. &F. W. Quackenbush, 1956. The structure of phytoene;Arch. Biochem. Biophys., 61,111–118.

    PubMed  Google Scholar 

  • Reichel, L. &M. Wallis, 1956. Über die Biosynthese des β-carotins;Ang. Chim., 68,181.

    Google Scholar 

  • Sissins, M. E., 1956. Ph. D. Thesis: The University of Liverpool.

  • Sörensen, N. A., 1948. Plantekjemiske Streiftog;Tidsskr. Kjemi, Bergressen Met., 6,95–100.

    Google Scholar 

  • Stanier, R. Y., 1955. The plasticity of enzymatic patterns in microbial cells. InAspects of synthesis and order in growth. Ed.D. Rudnick. Princeton University Press.43–67.

  • Stanier, R. Y., 1957. Unpublished observations.

  • Stanier, R. Y. &G. Cohen-Bazire, 1957. The role of light in the microbial world; some facts and speculation. In Microbial Ecology. Ed.R. E. O. Williams &C. C. Spicer. Cambridge University Press.

  • Strain. H. H. &W. M. Manning, 1942. The occurrence and interconversion of various fucoxanthins;J. Amer. chem. Soc., 64,1235.

    Google Scholar 

  • Strain, H. H., W. M. Manning &G. Hardin, 1944. Xanthophylls and carotenes of diatoms, brown algae, dinoflagellates and sea anemones;Biol. Bull., 86,169–191.

    Google Scholar 

  • Tavormina, P. A., M. H. Gibbs &J. W. Huff, 1956. Utilization of β-hydroxy-β-methyl γ-valerolactone in cholesterol biosynthesis;J. Amer. Chem. Soc., 78,4498.

    Google Scholar 

  • Tavormina, P. A. &M. H. Gibbs, 1956. The metabolism of β-γ-dihydroxy-β-methylvaleric acid;J. Amer. chem. Soc., 78,6210.

    Google Scholar 

  • van Niel, C. B., 1947. Studies on the pigments of the purple bacteria. III The yellow and red pigments ofRhodopseudomonas spheroides; Leeuwenhoek med.Tindschr., 12,156–166.

    Google Scholar 

  • van Niel, C. B., T. W. Goodwin &M. E. Sissins, 1956. Studies in Carotenogenesis 21. The nature of the changes in carotenoid synthesis inRhodospirillum rubrum during growth;Biochem. J., 63,408–412.

    PubMed  Google Scholar 

  • Wai, K. N. T., J. C. Bishop, P. B. Mack, &R. H. Cotton, 1947. The vitamin content of soybeans and soybean sprouts as a function of germination time;Plant Physiol., 22,117–126.

    Google Scholar 

  • Withrow, R. B., W. H. Klein, L. Price &V. Elstad, 1953. Influence of visible and near infrared radiant energy on organ development and pigment synthesis in bean and corn;Plant Physiol., 28,1–14.

    Google Scholar 

  • Wolken, J. J. &A. D. Mellon, 1956. The relationship between chlorophyll and the carotenoids in the algal flagellate,Euglena; J. gen. Physiol., 39,675–685.

    Google Scholar 

  • Yokoyama, H., C. O. Chichester, T. Nakayama, A. Lukton &G. Mackinney, 1957. Carotene, 3-C14-and 4-C14-leucine;J. Amer. chem. Soc., 79,2029–2030.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodwin, T.W. Some problems of carotenoid formation in photosynthetic tissues. Plant Food Hum Nutr 3, 262–280 (1958). https://doi.org/10.1007/BF01884057

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01884057

Keywords

Navigation