Qualitas Plantarum et Materiae Vegetabiles

, Volume 3, Issue 1, pp 262–280 | Cite as

Some problems of carotenoid formation in photosynthetic tissues

  • T. W. Goodwin
III. Caroténoides


1. Information available on the nature, location in the cell, and distribution of carotenoids in the photosynthetic tissues of higher plants, in algae and in the photosynthetic bacteria is outlined.

2. The effects of light and temperature on carotenogenesis are discussed in some detail.

3. The mechanism of carotenogenesis has been discussed from the points of view of the three main outstanding problems: (a) the nature of the basic monomer; (b) the nature of the primitive C40 precursor and (c) the insertion of the oxygen function to produce xanthophylls.


Oxygen Plant Physiology Carotenoid Xanthophyll Photosynthetic Bacterium 


Rappel des données acquises sur la nature, la localisation dans la cellule et la distribution des caroténoïdes dans les tissus photosynthétiques des plantes supérieures, des algues et des bactéries photosynthétiques. Les effect de lumière et de température sur la caroténogenèse sont examinés en détail. Le mécanisme de la caroténogenèse a été discuté en partant des trois problèmes principaux: (a) la nature du monomère initial; (b) la nature du précurseur primaire en C40; (c) l'introduction de la fonction oxhydrile déterminant la formation de xanthophylle.


Die bekannten Daten über Natur, Lokalisierung in der Zelle, und Verbreitung von Karotinoïden in den der Photosynthese dienenden Geweben der höheren Pflanzen, der Algen und der photosynthetischen Bakterien werden erwähnt. Die Einflüsse des Lichtes und der Temperatur auf die Karotinoïdbildung werden eingehend besprochen. Der Mechanismus der Karotinoïdbildung wurde diskutiert, ausgehend von drei Gesichtspunkten: a) von der Natur des Monomers, das die Grundsubstanz bildet; b) von der Natur des ersten Vorproduktes C40; c) von dem Einbau von OH-Gruppen in das Molekul, um Xanthophylle zu bilden.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bandurski, R. S., 1949. Synthesis of carotenoid pigments in detached bean leaves;Botan. Gaz., 111,95–109.Google Scholar
  2. Bandurski, R. S., F. M. Scott, M. Pflug &F. W. Went, 1953. The effect of temperature on the colour and anatomy of the tomato leaves;Amer. J. Bot., 40,41–46.Google Scholar
  3. Barrenscheen, H. K., J. Pany &E. Srb, 1942. Synthetische Leistung des Keimlings. 1 Mitteilung. Die Bildung von Ascorbinsäure und der Carotinoide in etiolierten Weizenkeimlingen;Biochem. Z., 310,285–291.Google Scholar
  4. Blaauw-Jansen, G., J. G. Komen &J. B. Thomas, 1950. On the relation between the formation of assimilatory pigments and the rate of photosynthesis in etiolated oat seedlings;Biochem. Biophys. Acta, 5,179–185.PubMedGoogle Scholar
  5. Bloch, K., In „Essays in Biochemistry” Ed.S. Graff. New York. J. Wiley, 1956.Google Scholar
  6. Braithwaite, G. D. &T. W. Goodwin, 1957a. Unpublished observations.Google Scholar
  7. Braithwaite, G. D. &T. W. Goodwin, 1957b. Mevalonic acid and carotenogenesis inPhycomyces blakesleeanus. Biochem. J. (In the press).Google Scholar
  8. Chichester, C. O., T. Nakayama, G. Mackinney &T. W. Goodwin, 1955. On the incorporation of leucine-carbon into carotene byPhycomyces;J. biol. Chem., 214,515–568.PubMedGoogle Scholar
  9. Claes, H., 1954. Analyse der biochemischen Synthesekette für Carotinoide mit Hilfe vonChlorella - Mutanten;Z, Naturforsch., 9b,462–469.Google Scholar
  10. Claes, H., 1956. Biosynthese von Carotinoiden beiChlorella;Z. Naturforsch., 11b,260–266.Google Scholar
  11. Coon, M. J., W. G. Robinson &B. K. Bachhawat, 1955. Enzymatic studies on the biological degradation of the branched chain amino acids. In „Amino Acid Metabolism” Ed.W. D. McElroy &H. B. Glass. Baltimore. Johns Hopkins Press p. 431.Google Scholar
  12. Cornforth, J. W., R. H. Cornforth, G. Popják &I. Youhotsky-Gore, 1954. Biosynthesis of squalene and cholesterol fromDL-β-methyl-S-(2-14e)-valerolactone;Biochem. J., 66,100.Google Scholar
  13. Eugster, C. H., E. Linner, A. H. Trivedi &P. Karrer, 1956. Carotinoidsynthesen XIX. Synthese eines 6,7,6′,7′-tetra-hydrolycopins und dessen Beziehung Neurosporin;Helv. Chim. Acta., 39,690–698.Google Scholar
  14. Frank, S., 1951. The relation between carotenoid and chlorphyll pigments inAvena coleoptiles;Arch. Biochem., 30,52–61.PubMedGoogle Scholar
  15. Glover, J. &E. R. Redfearn, 1953. Biosynthesis of14(C)-β-carotene;Biochem. J., 54, viii.Google Scholar
  16. Goodwin, T. W., 1952. The Comparative Biochemistry of the Carotenoids; London, Champan & Hall. pp. 356.Google Scholar
  17. Goodwin, T. W., 1954. Some observations on carotenoid synthesis by the algaChlorella vulgaris;Experientia, 10,213.PubMedGoogle Scholar
  18. Goodwin, T. W., 1955a. The nature, biosynthesis and function of the carotenoids in the photosynthetic bacteria;Souvenir Soc. Biol. Chemists India, 271–276.Google Scholar
  19. Goodwin, T. W., 1955b. Carotenoids;Ann. Rev. Biochem., 24,497–522.PubMedGoogle Scholar
  20. Goodwin, T. W., 1957. Unpublished observations.Google Scholar
  21. Goodwin, T. W., 1958a. In Handbook of Plant Physiology, Springer. Heidelberg Volumes 5 and 10. (In the press).Google Scholar
  22. Goodwin, T. W., 1958b. Studies in carotenogenesis 24. The changes in carotenoid and chlorophyll pigments in the leaves of deciduous trees during autumn necrosis.Biochem. J., 68,503–511.PubMedGoogle Scholar
  23. Goodwin, T. W. &M. Jamikorn, 1954. Studies in Carotenogenesis. Some observations on carotenoid synthesis in two varieties ofEuglena gracilis;J. Protozool., 1,216–219.Google Scholar
  24. Goodwin, T. W. &D. G. Land, 1956. Studies in carotenogenesis 20. Carotenoids of some species ofChlorobium;Biochem. J., 62,553–556.PubMedGoogle Scholar
  25. Goodwin, T. W., D. G. Land &H. G. Osman, 1955. Studies in carotonogenesis 14. Carotenoid biosynthesis in the photosynthetic bacteriumRhodopseudomonas spheroides;Biochem. J., 59,491–496.PubMedGoogle Scholar
  26. Goodwin, T. W., D. G. Land &M. E. Sissins, 1956. Studies in carotenogenesis 23. The nature of the carotenoids in the photosynthetic bacteriumRhodopseudomonas spheroides (Athiorhodaceae);Biochem., 64,486–492.Google Scholar
  27. Goodwin, T. W. &W. Lijinsky, 1951. Carotene production byPhycomyces blakesleeanus: the effect of different amino acids when used in media containing low concentrations of glucose;Biochem. J., 50,268–273.PubMedGoogle Scholar
  28. Goodwin, T. W., W. Lijinsky &J. S. Willmer, 1953. The effect of some possible β-carotene precursors on growth, lipogenesis and carotenogenesis in the fungusPhycomyces blakesleeanus;Biochem. J., 53,208–212.PubMedGoogle Scholar
  29. Goodwin, T. W. &H. G. Osman, 1953. Studies in carotenogenesis 9. General cultural conditions controlling carotenoid (spirilloxanthin) synthesis in the photosynthetic bacteriumRhodospirillum rubrum;Biochem. J., 53,541–546.PubMedGoogle Scholar
  30. Goodwin, T. W. &H. G. Osman, 1954. Studies in carotenogenesis 10. Spirilloxanthin synthesis by washed cells ofRhodospirillum rubrum;Biochem. J., 56,222–230.PubMedGoogle Scholar
  31. Griffiths, M., W. R. Sistrom, G. Cohen-Bazire &R. Y. Stanier, 1955. Function of carotenoids in photosynthesis;Nature, 176,1211–1215.PubMedGoogle Scholar
  32. Grob, E. C. &R. Bütler, 1955. Neues über die Beteiligung der Essigsäure am Aufbau des β-carotins;Chimia, 10, 258-9.Google Scholar
  33. Jeffrey, R. N. &R. B. Griffith, 1947. Changes in the chlorophyll and carotene contents of curing burley tobacco cut at different stages of maturity;Plant Physiol., 22,34–41.Google Scholar
  34. Kay, R. E. &B. Phinney, 1956. Plastid pigment changes in the early seedling leaves ofZea mays L.Plant Physiol., 31,226–231.Google Scholar
  35. Koe, B. K. &L. Zechmeister, 1952.In vitro conversion of phytofluene and phytoene into carotenoid pigments;Arch. Biochem. Biophys., 41,236–238 PubMedGoogle Scholar
  36. Mackinney, G. 1958. This volume p. 281.Google Scholar
  37. Moster, J. B. &F. W. Quackenbush, 1952. The effect of temperature and light on the carotenoids of seedlings grown from three corn hybrids;Arch. Biochem. Biophys., 38,297–303.PubMedGoogle Scholar
  38. Porter, J. W. &R. E. Lincoln, 1950.Lypersicon selections containing a high content of carotenes and colourless polyenes. The mechanisms of carotene biosynthesis;Arch. Biochem., 27,390–403.PubMedGoogle Scholar
  39. Porter, J. W., F. W. Strong, R. A. Brink &N. R. Neal, 1946. Carotene content of the corn plant;J. Agric. Res., 72,169–187.Google Scholar
  40. Rabourn, W. J. &F. W. Quackenbush, 1956. The structure of phytoene;Arch. Biochem. Biophys., 61,111–118.PubMedGoogle Scholar
  41. Reichel, L. &M. Wallis, 1956. Über die Biosynthese des β-carotins;Ang. Chim., 68,181.Google Scholar
  42. Sissins, M. E., 1956. Ph. D. Thesis: The University of Liverpool.Google Scholar
  43. Sörensen, N. A., 1948. Plantekjemiske Streiftog;Tidsskr. Kjemi, Bergressen Met., 6,95–100.Google Scholar
  44. Stanier, R. Y., 1955. The plasticity of enzymatic patterns in microbial cells. InAspects of synthesis and order in growth. Ed.D. Rudnick. Princeton University Press.43–67.Google Scholar
  45. Stanier, R. Y., 1957. Unpublished observations.Google Scholar
  46. Stanier, R. Y. &G. Cohen-Bazire, 1957. The role of light in the microbial world; some facts and speculation. In Microbial Ecology. Ed.R. E. O. Williams &C. C. Spicer. Cambridge University Press.Google Scholar
  47. Strain. H. H. &W. M. Manning, 1942. The occurrence and interconversion of various fucoxanthins;J. Amer. chem. Soc., 64,1235.Google Scholar
  48. Strain, H. H., W. M. Manning &G. Hardin, 1944. Xanthophylls and carotenes of diatoms, brown algae, dinoflagellates and sea anemones;Biol. Bull., 86,169–191.Google Scholar
  49. Tavormina, P. A., M. H. Gibbs &J. W. Huff, 1956. Utilization of β-hydroxy-β-methyl γ-valerolactone in cholesterol biosynthesis;J. Amer. Chem. Soc., 78,4498.Google Scholar
  50. Tavormina, P. A. &M. H. Gibbs, 1956. The metabolism of β-γ-dihydroxy-β-methylvaleric acid;J. Amer. chem. Soc., 78,6210.Google Scholar
  51. van Niel, C. B., 1947. Studies on the pigments of the purple bacteria. III The yellow and red pigments ofRhodopseudomonas spheroides; Leeuwenhoek med.Tindschr., 12,156–166.Google Scholar
  52. van Niel, C. B., T. W. Goodwin &M. E. Sissins, 1956. Studies in Carotenogenesis 21. The nature of the changes in carotenoid synthesis inRhodospirillum rubrum during growth;Biochem. J., 63,408–412.PubMedGoogle Scholar
  53. Wai, K. N. T., J. C. Bishop, P. B. Mack, &R. H. Cotton, 1947. The vitamin content of soybeans and soybean sprouts as a function of germination time;Plant Physiol., 22,117–126.Google Scholar
  54. Withrow, R. B., W. H. Klein, L. Price &V. Elstad, 1953. Influence of visible and near infrared radiant energy on organ development and pigment synthesis in bean and corn;Plant Physiol., 28,1–14.Google Scholar
  55. Wolken, J. J. &A. D. Mellon, 1956. The relationship between chlorophyll and the carotenoids in the algal flagellate,Euglena; J. gen. Physiol., 39,675–685.Google Scholar
  56. Yokoyama, H., C. O. Chichester, T. Nakayama, A. Lukton &G. Mackinney, 1957. Carotene, 3-C14-and 4-C14-leucine;J. Amer. chem. Soc., 79,2029–2030.Google Scholar

Copyright information

© Uitgeverij Dr. W. Junk 1958

Authors and Affiliations

  • T. W. Goodwin
    • 1
  1. 1.Department of BiochemistryThe UniversityLiverpoolEngland

Personalised recommendations