Skip to main content
Log in

A search for the classical model of spin

  • Part IV. Invited Papers Dedicated To Asim Orhan Barut
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The study of the motion of the magnetic top—a classical spherical top which carries magnetic moment proportional to its angular momentum, is motivated and inspired by the quantum mechanical relation between spin angular momentum and spin magnetic moment. Inversely, the magnetic top, taken to be the classical model of quantum spin, implies the description of spin states by probability amplitudes of the top orientation angles, instead of by Pauli spinors. This opens new possibilities for the interpretation of many interesting spin experiments which serve as tests of basic principles of quantum mechanics and of the postulates of the quantum theory of measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schrödinger, “The meaning of wave mechanics,” inLouis de Broglie, Physicien et Penseur (Michel, Paris, 1953).

    Google Scholar 

  2. L. de Broglie,Etude critique des bases de l'interpretation actuelle de la mecanique ondulatoire (Gauthier-Villars, Paris, 1963).

    Google Scholar 

  3. P. A. M. Dirac,The Principles of Quantum Mechanics (Oxford University Press, Oxford, 1958).

    Google Scholar 

  4. W. Heisenberg,Introduction to the Unified Field Theory of Elementary Particles (Interscience Publishers, London, 1966).

    Google Scholar 

  5. W. Pauli,Z. Phys. 31, 765 (1925).

    Google Scholar 

  6. A. O. Barut, inSpinors in Physics and Geometry, A. Trautman and G. Furlan, eds. (World Scientific, Singapore, 1988), p. 298.

    Google Scholar 

  7. G. E. Uhlenbeck and S. Goudsmit,Naturwissenschaften 13, 953 (1925).

    Google Scholar 

  8. V. F. Bopp and R. Haag,Z. Naturforsh. 5a, 644 (1950).

    Google Scholar 

  9. A. O. Barut, M. Božić, and Z. Marić,Ann. Phys. (N.Y.)214, 53 (1992).

    Google Scholar 

  10. H. A. Kramers,Quantum Mechanics (North-Holland, Amsterdam, 1958).

    Google Scholar 

  11. B. I. Bleaney and B. Bleaney,Electricity and Magnetism (Oxford University Press, Oxford, 1987).

    Google Scholar 

  12. A. O. Barut and M. Božić, to be published in theProceedings Wigner Symposium (Goslar, Germany, 1991).

    Google Scholar 

  13. J. P. Dahl,Det. K. Dan. Vidensk, Selsk. Mat.-fys. Meddelelser 39, 12 (1977).

    Google Scholar 

  14. Quantum Theory and Measurement, J. A. Wheeler and W. H. Zurek, eds. (Princeton University Press, Princeton, New Jersey, 1983).

    Google Scholar 

  15. D. Bohm,Phys. Rev. 84, 166 (1951);85, 166 (1952).

    Google Scholar 

  16. J. P. Vigier,Astr. Nachr. 303, 61 (1982).

    Google Scholar 

  17. F. Selleri,Quantum Paradoxes and Physical Reality (Kluwer, Dordrecht, 1990).

    Google Scholar 

  18. C. Cohen-Tannoudji, B. Diu, and F. Laloë,Mecanique quantique, I (Hermann, Paris, 1977).

    Google Scholar 

  19. J. Summhammer, G. Badurek, H. Rauch, U. Kischko, and A. Zeilinger,Phys. Rev. A 27, 2523 (1983).

    Google Scholar 

  20. D. Bohm,Quantum Theory (Prentice-Hall, Englewood Cliffs, New Jersey, 1951), Chap. 22.

    Google Scholar 

  21. J. S. Bell,Physics 1, 195 (1964).

    Google Scholar 

  22. A. Fine,Phys. Rev. Lett. 48, 291 (1982);J. Math. Phys. 23, 1306 (1982).

    Google Scholar 

  23. D'Espagnat,Sci. Am. 241, 158 (1979);Phys. Rev. D 11, 1424 (1975).

    Google Scholar 

  24. A. O. Barut, M. Božić, and Z. Marić,Found. Phys. 18, 999 (1988).

    Google Scholar 

  25. A. O. Barut and M. Božić,Nuovo Cimento B,101, 595 (1988).

    Google Scholar 

  26. M. Lamehi-Rachti and W. Mittig,Phys. Rev. D 14, 2543 (1976).

    Google Scholar 

  27. A. Aspect, P. Grangier, and G. Roger,Phys. Rev. Lett. 49, 91 (1982).

    Google Scholar 

  28. M. H. Tixier, in “Microphysical Reality and Quantum Formalism,” A. van der Merweet al., eds. (Kluwer, Dordrecht, 1988), p. 361.

    Google Scholar 

  29. M. Božić,Lecture Notes in Physics, Vol. 201, (Springer, Berlin, 1984), p. 27.

    Google Scholar 

  30. H. Rauch, A. Zeilinger, G. Badurek, A. Wilfing, W. Bauspiess, and U. Bonse,Phys. Lett. A 54, 425 (1975).

    Google Scholar 

  31. A. G. Klein and G. I. Opat,Phys. Rev. Lett. 37, 238 (1976).

    Google Scholar 

  32. Z. Marić and M. Božić,Lecture Notes in Physics, Vol. 180 (Springer, Berlin, 1983), p. 486.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Božić, M., Marić, Z. A search for the classical model of spin. Found Phys 23, 819–835 (1993). https://doi.org/10.1007/BF01883811

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01883811

Keywords

Navigation