Advertisement

Foundations of Physics

, Volume 23, Issue 5, pp 819–835 | Cite as

A search for the classical model of spin

  • M. Božić
  • Z. Marić
Part IV. Invited Papers Dedicated To Asim Orhan Barut
  • 71 Downloads

Abstract

The study of the motion of the magnetic top—a classical spherical top which carries magnetic moment proportional to its angular momentum, is motivated and inspired by the quantum mechanical relation between spin angular momentum and spin magnetic moment. Inversely, the magnetic top, taken to be the classical model of quantum spin, implies the description of spin states by probability amplitudes of the top orientation angles, instead of by Pauli spinors. This opens new possibilities for the interpretation of many interesting spin experiments which serve as tests of basic principles of quantum mechanics and of the postulates of the quantum theory of measurement.

Keywords

Angular Momentum Quantum Mechanic Basic Principle Quantum Theory Classical Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Schrödinger, “The meaning of wave mechanics,” inLouis de Broglie, Physicien et Penseur (Michel, Paris, 1953).Google Scholar
  2. 2.
    L. de Broglie,Etude critique des bases de l'interpretation actuelle de la mecanique ondulatoire (Gauthier-Villars, Paris, 1963).Google Scholar
  3. 3.
    P. A. M. Dirac,The Principles of Quantum Mechanics (Oxford University Press, Oxford, 1958).Google Scholar
  4. 4.
    W. Heisenberg,Introduction to the Unified Field Theory of Elementary Particles (Interscience Publishers, London, 1966).Google Scholar
  5. 5.
    W. Pauli,Z. Phys. 31, 765 (1925).Google Scholar
  6. 6.
    A. O. Barut, inSpinors in Physics and Geometry, A. Trautman and G. Furlan, eds. (World Scientific, Singapore, 1988), p. 298.Google Scholar
  7. 7.
    G. E. Uhlenbeck and S. Goudsmit,Naturwissenschaften 13, 953 (1925).Google Scholar
  8. 8.
    V. F. Bopp and R. Haag,Z. Naturforsh. 5a, 644 (1950).Google Scholar
  9. 9.
    A. O. Barut, M. Božić, and Z. Marić,Ann. Phys. (N.Y.)214, 53 (1992).Google Scholar
  10. 10.
    H. A. Kramers,Quantum Mechanics (North-Holland, Amsterdam, 1958).Google Scholar
  11. 11.
    B. I. Bleaney and B. Bleaney,Electricity and Magnetism (Oxford University Press, Oxford, 1987).Google Scholar
  12. 12.
    A. O. Barut and M. Božić, to be published in theProceedings Wigner Symposium (Goslar, Germany, 1991).Google Scholar
  13. 13.
    J. P. Dahl,Det. K. Dan. Vidensk, Selsk. Mat.-fys. Meddelelser 39, 12 (1977).Google Scholar
  14. 14.
    Quantum Theory and Measurement, J. A. Wheeler and W. H. Zurek, eds. (Princeton University Press, Princeton, New Jersey, 1983).Google Scholar
  15. 15.
    D. Bohm,Phys. Rev. 84, 166 (1951);85, 166 (1952).Google Scholar
  16. 16.
    J. P. Vigier,Astr. Nachr. 303, 61 (1982).Google Scholar
  17. 17.
    F. Selleri,Quantum Paradoxes and Physical Reality (Kluwer, Dordrecht, 1990).Google Scholar
  18. 18.
    C. Cohen-Tannoudji, B. Diu, and F. Laloë,Mecanique quantique, I (Hermann, Paris, 1977).Google Scholar
  19. 19.
    J. Summhammer, G. Badurek, H. Rauch, U. Kischko, and A. Zeilinger,Phys. Rev. A 27, 2523 (1983).Google Scholar
  20. 20.
    D. Bohm,Quantum Theory (Prentice-Hall, Englewood Cliffs, New Jersey, 1951), Chap. 22.Google Scholar
  21. 21.
    J. S. Bell,Physics 1, 195 (1964).Google Scholar
  22. 22.
    A. Fine,Phys. Rev. Lett. 48, 291 (1982);J. Math. Phys. 23, 1306 (1982).Google Scholar
  23. 23.
    D'Espagnat,Sci. Am. 241, 158 (1979);Phys. Rev. D 11, 1424 (1975).Google Scholar
  24. 24.
    A. O. Barut, M. Božić, and Z. Marić,Found. Phys. 18, 999 (1988).Google Scholar
  25. 25.
    A. O. Barut and M. Božić,Nuovo Cimento B,101, 595 (1988).Google Scholar
  26. 26.
    M. Lamehi-Rachti and W. Mittig,Phys. Rev. D 14, 2543 (1976).Google Scholar
  27. 27.
    A. Aspect, P. Grangier, and G. Roger,Phys. Rev. Lett. 49, 91 (1982).Google Scholar
  28. 28.
    M. H. Tixier, in “Microphysical Reality and Quantum Formalism,” A. van der Merweet al., eds. (Kluwer, Dordrecht, 1988), p. 361.Google Scholar
  29. 29.
    M. Božić,Lecture Notes in Physics, Vol. 201, (Springer, Berlin, 1984), p. 27.Google Scholar
  30. 30.
    H. Rauch, A. Zeilinger, G. Badurek, A. Wilfing, W. Bauspiess, and U. Bonse,Phys. Lett. A 54, 425 (1975).Google Scholar
  31. 31.
    A. G. Klein and G. I. Opat,Phys. Rev. Lett. 37, 238 (1976).Google Scholar
  32. 32.
    Z. Marić and M. Božić,Lecture Notes in Physics, Vol. 180 (Springer, Berlin, 1983), p. 486.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • M. Božić
    • 1
  • Z. Marić
    • 1
  1. 1.Institute of PhysicsBeogradYugoslavia

Personalised recommendations