Skip to main content
Log in

Clifford algebras and Hestenes spinors

  • Part I. Invited Papers Dedicated To David Hestenes
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

This article reviews Hestenes' work on the Dirac theory, where his main achievement is a real formulation of the theory within thereal Clifford algebra Cl 1,3 ≃ M2 (H). Hestenes invented first in 1966 hisideal spinors\(\phi \in Cl_{1,3 _2}^1 (1 - \gamma _{03} )\) and later 1967/75 he recognized the importance of hisoperator spinors ψ ∈ Cl + 1,3 ≃ M2 (C).

This article starts from the conventional Dirac equation as presented with matrices by Bjorken-Drell. Explicit mappings are given for a passage between Hestenes' operator spinors and Dirac's column spinors. Hestenes' operator spinors are seen to be multiples of even parts of real parts of Dirac spinors (real part in the decompositionC ⊗ Cl 1,3 andnot inC ⊗ M4 (R)=M4 (C)). It will become apparent that the standard matrix formulation contains superfluous parts, which ought to be cut out by Occam's razor.

Fierz identities of bilinear covariants are known to be sufficient to study the non-null case but are seen to be insufficient for the null case ψγ0ψ=0, ψγ0γ0123ψ=0. The null case is thoroughly scrutinized for the first time with a new concept calledboomerang. This permits a new intrinsically geometric classification of spinors. This in turn reveals a new class of spinors which has not been discussed before. This class supplements the spinors of Dirac, Weyl, and Majorana; it describes neither the electron nor the neutron; it is awaiting a physical interpretation and a possible observation.

Projection operators P±, Σ± are resettled among their new relatives in End(Cl 1,3 ). Finally, a new mapping, calledtilt, is introduced to enable a transition from Cl 1,3 to the (graded) opposite algebra Cl 3,1 without resorting to complex numbers, that is, not using a replacement γμiγμ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. Ablamowicz, P. Lounesto, and J. Maks, “Conference Report, Second Workshop on Clifford Algebras and Their Applications in Mathematical Physics” (Université des Sciences et Techniques du Languedoc, Montpellier, France, 1989),Found. Phys. 21, 735–748 (1991).

    Google Scholar 

  • S. L. Altmann,Rotations, Quaternions, and Double Groups (Clarendon Press, Oxford, 1986).

    Google Scholar 

  • E. Artin,Geometric Algebra (Interscience, New York, 1957, 1988).

    Google Scholar 

  • M. F. Atiyah, R. Bott, and A. Shapiro, “Clifford modules,”Topology 3, Suppl. 1, 3–38 (1964). Reprinted in R. Bott,Lectures on K(X) (Benjamin, New York, 1969), pp. 143–178. Reprinted in Michael Atiyah,Collected Works, Vol. 2 (Clarendon Press, Oxford, 1988), pp. 301–336.

    Google Scholar 

  • I. M. Benn and R. W. Tucker,An Introduction to Spinors and Geometry with Applications in Physics (Adam Hilger, Bristol, 1987).

    Google Scholar 

  • E. F. Bolinder, “Clifford algebra: what is it?”IEEE Antennas Propag. Soc. Newslett. 29, 18–23 (1987).

    Google Scholar 

  • N. Bourbaki,Algèbre, Formes sesquilinéaires et formes quadratiques (Hermann, Paris, 1959), Chap. 9.

    Google Scholar 

  • F. Brackx, R. Delanghe, F. Sommen,Clifford Analysis (Research Notes in Mathematics76) (Pitman Books, London, 1982).

    Google Scholar 

  • R. Brauer and H. Weyl, “Spinors inn dimensions.”Amer. J. Math. 57, 425–449 (1935). Reprinted inSelecta Hermann Weyl (Birkhäuser, Basel, 1956), pp. 431–454.

    Google Scholar 

  • P. Budinich and A. Trautman,The Spinorial Chessboard (Springer, Berlin, 1988).

    Google Scholar 

  • E. Cartan, (exposé, d'après l'article allemand de E. Study), “Nombres complexes,” in J. Molk, ed.:Encyclopédie des sciences mathématiques, Tome I, Vol. 1, Fasc. 4, art. 15 (1908), pp. 329–468. Reprinted in E. Cartan,Œuvres Complètes, Partie II (Gauthier-Villars, Paris, 1953), pp. 107–246.

  • C. Chevalley,The Algebraic Theory of Spinors (Columbia University Press, New York, 1954).

    Google Scholar 

  • C. Chevalley,The Construction and Study of Certain Important Algebras (Mathematical Society of Japan, Tokyo, 1955).

    Google Scholar 

  • J. S. R. Chisholm and A. K. Common, eds.,Proceedings of the NATO and SERC Workshop on “Clifford Algebras and Their Applications in Mathematical Physics”, Canterbury, England, U.K., 1985 (Reidel, Dordrecht, 1986).

  • W. K. Clifford, “Applications of Grassmann's extensive algebra,”Am. J. Math. 1, 350–358 (1878).

    Google Scholar 

  • W. K. Clifford, “On the classification of geometric algebras,” in R. Tucker, ed.,Mathematical Papers by William Kingdon Clifford (Macmillan, London, 1982), pp. 397–401. (Reprinted by Chelsea, New York, 1968.) Title of talk announced already inProc. London Math. Soc. 7, 135 (1876).

    Google Scholar 

  • J. Crawford, “On the algebra of Dirac bispinor densities: Factorization and inversion theorems,”J. Math. Phys. 26, 1439–1441 (1985).

    Google Scholar 

  • A. Crumeyrolle,Orthogonal and Symplectic Clifford Algebras, Spinor Structures (Kluwer, Dordrecht, 1990).

    Google Scholar 

  • C. Daviau, “Pourquoi il faut lire Hestenes,”Ann. Fond. Louis de Broglie 16, 391–403 (1991).

    Google Scholar 

  • R. Deheuvels,Formes quadratiques et groupes classiques (Presses Universitaires de France, Paris, 1981).

    Google Scholar 

  • R. Delanghe, “On regular-analytic functions with values in a Clifford algebra,”Math. Ann. 185, 91–111 (1970).

    Google Scholar 

  • R. Delanghe, F. Sommen, and V. Souček,Clifford Algebra and Spinor Valued Functions: A Function Theory for the Dirac Operator (Kluwer, Dordrecht, 1992).

    Google Scholar 

  • J. Gilbert and M. Murray,Clifford Algebras and Dirac Operators in Harmonic Analysis (Cambridge Studies in Advanced Mathematics26) (Cambridge University Press, Cambridge, 1991).

    Google Scholar 

  • W. Greub,Multilinear Algebra, 2nd edn. (Springer, Berlin, 1978).

    Google Scholar 

  • J. D. Hamilton, “The Dirac equation and Hestenes' geometric algebra,”J. Math. Phys. 25, 1823–1832 (1984).

    Google Scholar 

  • F. R. Harvey,Spinors and Calibrations (Academic Press, San Diego, 1990).

    Google Scholar 

  • J. Helmstetter,Algèbres de Clifford et algèbres de Weyl, Cahiers Math. 25, Montpellier, 1982.

  • D. Hestenes,Space-Time Algebra (Gordon & Breach, New York, 1966, 1987, 1992).

    Google Scholar 

  • D. Hestenes, “Real spinor fields,”J. Math. Phys. 8, 798–808 (1967).

    Google Scholar 

  • D. Hestenes, “Multivector calculus,”J. Math. Anal. Appl. 24, 313–325 (1968).

    Google Scholar 

  • D. Hestenes, “Vectors, spinors and complex numbers in classical and quantum physics,”Am. J. Phys. 39, 1013–1028 (1971).

    Google Scholar 

  • D. Hestenes, “Observables, operators, and complex numbers in the Dirac theory,”J. Math. Phys. 16, 556–572 (1975).

    Google Scholar 

  • D. Hestenes, “Wherefore a science of teaching?”Phys. Teach. 17, 235–242 (1979).

    Google Scholar 

  • D. Hestenes, “Space-time structure of weak and electromagnetic interactions,”Found. Phys. 12, 153–168 (1982).

    Google Scholar 

  • D. Hestenes,New Foundations for Classical Mechanics (Reidel, Dordrecht, 1986, 1987).

    Google Scholar 

  • D. Hestenes, “The Zitterbewegung interpretation of quantum mechanics,”Found. Phys. 20, 1213–1232 (1990).

    Google Scholar 

  • D. Hestenes and G. Sobczyk,Clifford Algebra to Geometric Calculus (Reidel, Dordrecht, 1984, 1987).

    Google Scholar 

  • B. Jancewicz,Multivectors and Clifford Algebra in Electrodynamics (World Scientific, Singapore, 1988).

    Google Scholar 

  • M.-A. Knus,Quadratic Forms, Clifford Algebras and Spinors (Universidad Estadual de Campinas, SP, 1988).

    Google Scholar 

  • T.-Y. Lam,The Algebraic Theory of Quadratic Forms (Benjamin, Reading, Massachusetts, 1973, 1980).

    Google Scholar 

  • H. B. Lawson and M.-L. Michelsohn,Spin Geometry (Princeton University Press, Princeton, New Jersey, 1989).

    Google Scholar 

  • R. Lipschitz, “Principles d'un calcul algébrique qui contient comme espèces particulières le calcul des quantités imaginaires et des quaternions,”C.R. Acad. Sci. (Paris) 91, 619–621, 660–664 (1880). Reprinted inBull. Soc. Math. (2) 11, 115–120 (1887).

    Google Scholar 

  • R. Lipschitz,Untersuchungen über die Summen von Quadraten (Max Cohen & Sohn, Bonn, 1886), pp. 1–147. [The first chapter of pp. 5–57 translated into French by J. Molk: “Recherches sur la transformation, par des substitutions réelles, d'une somme de deux ou troix carrés en elle-même,”J. Math. Pures Appl. (4) 2, 373–439 (1886). French résumé of all the three chapters inBull. Sci. Math. (2) 10, 163–183 (1886).]

    Google Scholar 

  • R. Lipschitz (signed), “Correspondence,”Ann. Math. 69, 247–251 (1959).

    Google Scholar 

  • P. Lounesto, “Report on Conference, NATO and SERC Workshop on Clifford Algebras and Their Applications in Mathematical Physics,” University of Kent, Canterbury, England, 1985.Found. Phys. 16, 967–971 (1986).

  • J. Marsh, Book review: D. Hestenes and G. Sobczyk,Clifford Algebra to Geometric Calculus, Am. J. Phys. 53, 510–511 (1985).

  • A. Micali and Ph. Revoy,Modules quadratiques, Cahiers Math. 10, Montpellier, 1977, reprinted inBull. Soc. Math. Fr. 63, Suppl., 5–144 (1979).

  • A. Micali, R. Boudet, and J. Helmstetter, eds.,Proceedings of the Second Workshop on “Clifford Algebras and Their Applications in Mathematical Physics,” Université des Sciences et Techniques du Languedoc, Montpellier, France, 1989 (Kluwer, Dordrecht, 1992).

  • C. Poole, Book review: D. Hestenes,New Foundations for Classical Mechanics, Found. Phys.17, 859–862 (1987).

    Google Scholar 

  • I. R. Porteous,Topological Geometry (Van Nostrand Reinhold, London, 1969; Cambridge University Press, Cambridge, 1981).

    Google Scholar 

  • M. Riesz, “Sur certaines notions fondamentales en théorie quantique relativiste,”C. R. 10 e Congrès Math. Scandinaves, Copenhagen, 1946. (Gjellerups, Copenhagen, 1947), pp. 123–148. Reprinted in L. Gårding and L. Hörmander, eds.,Marcel Riesz, Collected Papers (Springer, Berlin, 1988), pp. 545–570.

    Google Scholar 

  • M. Riesz,Clifford Numbers and Spinors (The Institute for Fluid Dynamics and Applied Mathematics, Lecture Series38) (University of Maryland, University Park, 1958). Reprinted as facsimile by Kluwer, 1993 (E. F. Bolinder and P. Lounesto, eds.).

    Google Scholar 

  • H. Rothe, “Die Komplexen Zahlensysteme von W. K. Clifford und R. Lipschitz. Die orthogonalen Transformationen vonn Veränderlichen. Die Bewegungen und Umlegungen imn-dimensionalen Euklidischen und nichteuklidischen Raum,”Encykl. Math. Wiss. III AB 11, 1410–1416 (1916).

    Google Scholar 

  • E. Witt, “Theorie der quadratischen Formen in beliebigen Körpern,”J. Reine Angew. Math. 176, 31–44 (1937).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lounesto, P. Clifford algebras and Hestenes spinors. Found Phys 23, 1203–1237 (1993). https://doi.org/10.1007/BF01883677

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01883677

Keywords

Navigation