Abstract
This article reviews Hestenes' work on the Dirac theory, where his main achievement is a real formulation of the theory within thereal Clifford algebra Cl 1,3 ≃ M2 (H). Hestenes invented first in 1966 hisideal spinors\(\phi \in Cl_{1,3 _2}^1 (1 - \gamma _{03} )\) and later 1967/75 he recognized the importance of hisoperator spinors ψ ∈ Cl + 1,3 ≃ M2 (C).
This article starts from the conventional Dirac equation as presented with matrices by Bjorken-Drell. Explicit mappings are given for a passage between Hestenes' operator spinors and Dirac's column spinors. Hestenes' operator spinors are seen to be multiples of even parts of real parts of Dirac spinors (real part in the decompositionC ⊗ Cl 1,3 andnot inC ⊗ M4 (R)=M4 (C)). It will become apparent that the standard matrix formulation contains superfluous parts, which ought to be cut out by Occam's razor.
Fierz identities of bilinear covariants are known to be sufficient to study the non-null case but are seen to be insufficient for the null case ψ†γ0ψ=0, ψ†γ0γ0123ψ=0. The null case is thoroughly scrutinized for the first time with a new concept calledboomerang. This permits a new intrinsically geometric classification of spinors. This in turn reveals a new class of spinors which has not been discussed before. This class supplements the spinors of Dirac, Weyl, and Majorana; it describes neither the electron nor the neutron; it is awaiting a physical interpretation and a possible observation.
Projection operators P±, Σ± are resettled among their new relatives in End(Cl 1,3 ). Finally, a new mapping, calledtilt, is introduced to enable a transition from Cl 1,3 to the (graded) opposite algebra Cl 3,1 without resorting to complex numbers, that is, not using a replacement γμ →iγμ.
Similar content being viewed by others
References
R. Ablamowicz, P. Lounesto, and J. Maks, “Conference Report, Second Workshop on Clifford Algebras and Their Applications in Mathematical Physics” (Université des Sciences et Techniques du Languedoc, Montpellier, France, 1989),Found. Phys. 21, 735–748 (1991).
S. L. Altmann,Rotations, Quaternions, and Double Groups (Clarendon Press, Oxford, 1986).
E. Artin,Geometric Algebra (Interscience, New York, 1957, 1988).
M. F. Atiyah, R. Bott, and A. Shapiro, “Clifford modules,”Topology 3, Suppl. 1, 3–38 (1964). Reprinted in R. Bott,Lectures on K(X) (Benjamin, New York, 1969), pp. 143–178. Reprinted in Michael Atiyah,Collected Works, Vol. 2 (Clarendon Press, Oxford, 1988), pp. 301–336.
I. M. Benn and R. W. Tucker,An Introduction to Spinors and Geometry with Applications in Physics (Adam Hilger, Bristol, 1987).
E. F. Bolinder, “Clifford algebra: what is it?”IEEE Antennas Propag. Soc. Newslett. 29, 18–23 (1987).
N. Bourbaki,Algèbre, Formes sesquilinéaires et formes quadratiques (Hermann, Paris, 1959), Chap. 9.
F. Brackx, R. Delanghe, F. Sommen,Clifford Analysis (Research Notes in Mathematics76) (Pitman Books, London, 1982).
R. Brauer and H. Weyl, “Spinors inn dimensions.”Amer. J. Math. 57, 425–449 (1935). Reprinted inSelecta Hermann Weyl (Birkhäuser, Basel, 1956), pp. 431–454.
P. Budinich and A. Trautman,The Spinorial Chessboard (Springer, Berlin, 1988).
E. Cartan, (exposé, d'après l'article allemand de E. Study), “Nombres complexes,” in J. Molk, ed.:Encyclopédie des sciences mathématiques, Tome I, Vol. 1, Fasc. 4, art. 15 (1908), pp. 329–468. Reprinted in E. Cartan,Œuvres Complètes, Partie II (Gauthier-Villars, Paris, 1953), pp. 107–246.
C. Chevalley,The Algebraic Theory of Spinors (Columbia University Press, New York, 1954).
C. Chevalley,The Construction and Study of Certain Important Algebras (Mathematical Society of Japan, Tokyo, 1955).
J. S. R. Chisholm and A. K. Common, eds.,Proceedings of the NATO and SERC Workshop on “Clifford Algebras and Their Applications in Mathematical Physics”, Canterbury, England, U.K., 1985 (Reidel, Dordrecht, 1986).
W. K. Clifford, “Applications of Grassmann's extensive algebra,”Am. J. Math. 1, 350–358 (1878).
W. K. Clifford, “On the classification of geometric algebras,” in R. Tucker, ed.,Mathematical Papers by William Kingdon Clifford (Macmillan, London, 1982), pp. 397–401. (Reprinted by Chelsea, New York, 1968.) Title of talk announced already inProc. London Math. Soc. 7, 135 (1876).
J. Crawford, “On the algebra of Dirac bispinor densities: Factorization and inversion theorems,”J. Math. Phys. 26, 1439–1441 (1985).
A. Crumeyrolle,Orthogonal and Symplectic Clifford Algebras, Spinor Structures (Kluwer, Dordrecht, 1990).
C. Daviau, “Pourquoi il faut lire Hestenes,”Ann. Fond. Louis de Broglie 16, 391–403 (1991).
R. Deheuvels,Formes quadratiques et groupes classiques (Presses Universitaires de France, Paris, 1981).
R. Delanghe, “On regular-analytic functions with values in a Clifford algebra,”Math. Ann. 185, 91–111 (1970).
R. Delanghe, F. Sommen, and V. Souček,Clifford Algebra and Spinor Valued Functions: A Function Theory for the Dirac Operator (Kluwer, Dordrecht, 1992).
J. Gilbert and M. Murray,Clifford Algebras and Dirac Operators in Harmonic Analysis (Cambridge Studies in Advanced Mathematics26) (Cambridge University Press, Cambridge, 1991).
W. Greub,Multilinear Algebra, 2nd edn. (Springer, Berlin, 1978).
J. D. Hamilton, “The Dirac equation and Hestenes' geometric algebra,”J. Math. Phys. 25, 1823–1832 (1984).
F. R. Harvey,Spinors and Calibrations (Academic Press, San Diego, 1990).
J. Helmstetter,Algèbres de Clifford et algèbres de Weyl, Cahiers Math. 25, Montpellier, 1982.
D. Hestenes,Space-Time Algebra (Gordon & Breach, New York, 1966, 1987, 1992).
D. Hestenes, “Real spinor fields,”J. Math. Phys. 8, 798–808 (1967).
D. Hestenes, “Multivector calculus,”J. Math. Anal. Appl. 24, 313–325 (1968).
D. Hestenes, “Vectors, spinors and complex numbers in classical and quantum physics,”Am. J. Phys. 39, 1013–1028 (1971).
D. Hestenes, “Observables, operators, and complex numbers in the Dirac theory,”J. Math. Phys. 16, 556–572 (1975).
D. Hestenes, “Wherefore a science of teaching?”Phys. Teach. 17, 235–242 (1979).
D. Hestenes, “Space-time structure of weak and electromagnetic interactions,”Found. Phys. 12, 153–168 (1982).
D. Hestenes,New Foundations for Classical Mechanics (Reidel, Dordrecht, 1986, 1987).
D. Hestenes, “The Zitterbewegung interpretation of quantum mechanics,”Found. Phys. 20, 1213–1232 (1990).
D. Hestenes and G. Sobczyk,Clifford Algebra to Geometric Calculus (Reidel, Dordrecht, 1984, 1987).
B. Jancewicz,Multivectors and Clifford Algebra in Electrodynamics (World Scientific, Singapore, 1988).
M.-A. Knus,Quadratic Forms, Clifford Algebras and Spinors (Universidad Estadual de Campinas, SP, 1988).
T.-Y. Lam,The Algebraic Theory of Quadratic Forms (Benjamin, Reading, Massachusetts, 1973, 1980).
H. B. Lawson and M.-L. Michelsohn,Spin Geometry (Princeton University Press, Princeton, New Jersey, 1989).
R. Lipschitz, “Principles d'un calcul algébrique qui contient comme espèces particulières le calcul des quantités imaginaires et des quaternions,”C.R. Acad. Sci. (Paris) 91, 619–621, 660–664 (1880). Reprinted inBull. Soc. Math. (2) 11, 115–120 (1887).
R. Lipschitz,Untersuchungen über die Summen von Quadraten (Max Cohen & Sohn, Bonn, 1886), pp. 1–147. [The first chapter of pp. 5–57 translated into French by J. Molk: “Recherches sur la transformation, par des substitutions réelles, d'une somme de deux ou troix carrés en elle-même,”J. Math. Pures Appl. (4) 2, 373–439 (1886). French résumé of all the three chapters inBull. Sci. Math. (2) 10, 163–183 (1886).]
R. Lipschitz (signed), “Correspondence,”Ann. Math. 69, 247–251 (1959).
P. Lounesto, “Report on Conference, NATO and SERC Workshop on Clifford Algebras and Their Applications in Mathematical Physics,” University of Kent, Canterbury, England, 1985.Found. Phys. 16, 967–971 (1986).
J. Marsh, Book review: D. Hestenes and G. Sobczyk,Clifford Algebra to Geometric Calculus, Am. J. Phys. 53, 510–511 (1985).
A. Micali and Ph. Revoy,Modules quadratiques, Cahiers Math. 10, Montpellier, 1977, reprinted inBull. Soc. Math. Fr. 63, Suppl., 5–144 (1979).
A. Micali, R. Boudet, and J. Helmstetter, eds.,Proceedings of the Second Workshop on “Clifford Algebras and Their Applications in Mathematical Physics,” Université des Sciences et Techniques du Languedoc, Montpellier, France, 1989 (Kluwer, Dordrecht, 1992).
C. Poole, Book review: D. Hestenes,New Foundations for Classical Mechanics, Found. Phys.17, 859–862 (1987).
I. R. Porteous,Topological Geometry (Van Nostrand Reinhold, London, 1969; Cambridge University Press, Cambridge, 1981).
M. Riesz, “Sur certaines notions fondamentales en théorie quantique relativiste,”C. R. 10 e Congrès Math. Scandinaves, Copenhagen, 1946. (Gjellerups, Copenhagen, 1947), pp. 123–148. Reprinted in L. Gårding and L. Hörmander, eds.,Marcel Riesz, Collected Papers (Springer, Berlin, 1988), pp. 545–570.
M. Riesz,Clifford Numbers and Spinors (The Institute for Fluid Dynamics and Applied Mathematics, Lecture Series38) (University of Maryland, University Park, 1958). Reprinted as facsimile by Kluwer, 1993 (E. F. Bolinder and P. Lounesto, eds.).
H. Rothe, “Die Komplexen Zahlensysteme von W. K. Clifford und R. Lipschitz. Die orthogonalen Transformationen vonn Veränderlichen. Die Bewegungen und Umlegungen imn-dimensionalen Euklidischen und nichteuklidischen Raum,”Encykl. Math. Wiss. III AB 11, 1410–1416 (1916).
E. Witt, “Theorie der quadratischen Formen in beliebigen Körpern,”J. Reine Angew. Math. 176, 31–44 (1937).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Lounesto, P. Clifford algebras and Hestenes spinors. Found Phys 23, 1203–1237 (1993). https://doi.org/10.1007/BF01883677
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01883677