Foundations of Physics

, Volume 21, Issue 3, pp 299–310 | Cite as

Green's functions for off-shell electromagnetism and spacelike correlations

  • M. C. Land
  • L. P. Horwitz
Part VI. Invited Papers Dedicated To John Stewart Bell

Abstract

The requirement of gauge invariance for the Schwinger-DeWitt equations, interpreted as a manifestly covariant quantum theory for the evolution of a system in spacetime, implies the existence of a five-dimensional pre-Maxwell field on the manifold of spacetime and “proper time” τ. The Maxwell theory is contained in this theory; integration of the field equations over τ restores the Maxwell equations with the usual interpretation of the sources. Following Schwinger's techniques, we study the Green's functions for the five-dimensional hyperbolic field equations for both signatures ± [corresponding to O(4, 1) or O(3, 2) symmetry of the field equations] of the proper time derivative. The classification of the Green's functions follows that of the four-dimensional theory for “massive” fields, for which the “mass” squared may be positive or negative, respectively. The Green's functions for the five-dimensional field are then given by the Fourier transform over the “mass” parameter. We derive the Green's functions corresponding to the principal part ΔP and the homogeneous function Δ 1 ; all of the Green's functions can be expressed in terms of these, as for the usual field equations with definite mass. In the O(3, 2) case, the principal part function has support for x2⩾τ2, corresponding to spacelike propagation, as well as along the light cone x2=0 (for τ=0). There can be no transmission ofinformation in spacelike directions, with this propagator, since the Maxwell field, obtained by integration over τ, does not contain this component of the support. Measurements are characterized by such an integration. The spacelike field therefore can dynamically establish spacelike correlations.

Keywords

Manifold Field Equation Gauge Invariance Proper Time Light Cone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Schwinger,Phys. Rev. 82, 664 (1951).Google Scholar
  2. 2.
    B. DeWitt,Dynamical Theory of Groups and Fields (Gordon & Breach, New York, 1965).Google Scholar
  3. 3.
    E. C. G. Stueckelberg,Helv. Phys. Acta 14, 322 (1941);14, 588 (1941);15, 23 (1942).Google Scholar
  4. 4.
    L. P. Horwitz and C. Piron,Helv. Phys. Acta 48, 316 (1973).Google Scholar
  5. 5.
    L. D. Landau and R. Peierls,Z. Phys. 69, 56 (1931); Y. Aharonov and D. Albert,Phys. Rev. D 24, 359 (1981).Google Scholar
  6. 6.
    R. I. Arshansky and L. P. Horwitz,J. Math. Phys. 30, 66 (1989);30, 380 (1989).Google Scholar
  7. 7.
    R. I. Arshansky and L. P. Horwitz,J. Math. Phys. 30, 213 (1989).Google Scholar
  8. 8.
    L. P. Horwitz and Y. Lavie,Phys. Rev. D 26, 819 (1982).Google Scholar
  9. 9.
    R. I. Arshansky, L. P. Horwitz, and Y. Lavie,Found. Phys. 13, 1167 (1983).Google Scholar
  10. 10.
    L. P. Horwitz, R. I. Arshansky, and A. Elitzur,Found. Phys. 18, 1159 (1988).Google Scholar
  11. 11.
    D. Saad, L. P. Horwitz, and R. I. Arshansky,Found. Phys. 19, 1125 (1989); L. Hostler,J. Math. Phys. 21, 2461 (1979);22, 2307 (1980); R. Kubo,Nuovo Cimento A 85, 4 (1984).Google Scholar
  12. 12.
    F. H. Molzahn, T. A. Osborn, and S. A. Fulling,Ann. Phys. (N.Y.), to appear, and references therein; R. A. Corns and T. A. Osborn, to be published.Google Scholar
  13. 13.
    J. M. Jauch and F. Rohrlich,The Theory of Photons and Electrons, 2nd edn. (Springer, New York, 1978).Google Scholar
  14. 14.
    J. S. Schwinger,Phys. Rev. 75, 651 (1949).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • M. C. Land
    • 1
  • L. P. Horwitz
    • 1
  1. 1.School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations