Foundations of Physics

, Volume 16, Issue 5, pp 455–464 | Cite as

Gravitational radiation reaction on the motion of particles in general relativity

  • P. A. Hogan
  • I. Robinson
Part IV. Invited Papers Dedicated To John Archibald Wheeler

Abstract

We examine the problem of deducing the geodesic motion of test particles from Einstein's vacuum field equations and its extension to include gravitational radiation reaction. In the latter case we obtain an equation of motion for a particle which incorporates radiation reaction of the electrodynamical type, but due to shearing radiation, together with a mass-loss formula of the Bondi-Sachs type.

Keywords

Radiation General Relativity Field Equation Test Particle Gravitational Radiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Infeld and J. Plebanski,Motion and Relativity (Pergamon, New York, 1960).Google Scholar
  2. 2.
    L. Infeld and A. Schild,Rev. Mod. Phys. 21, 408 (1949).Google Scholar
  3. 3.
    P. A. Hogan and I. Robinson, “The Motion of Charged Test Particles in General Relativity,”Found. Phys. 15, 617 (1985).Google Scholar
  4. 4.
    H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner,Proc. R. Soc. London A 269, 21 (1962).Google Scholar
  5. 5.
    R. K. Sachs,Proc. R. Soc. London A 270, 103 (1962.Google Scholar
  6. 6.
    R. W. Lind, J. Messmer, and E. T. Newman,J. Math. Phys. 13, 1884 (1972).Google Scholar
  7. 7.
    P. A. Hogan and A. Trautman, “On Gravitational Radiation from Bounded Sources,” inGravitation and Geometry, W. Rindler and A. Trautman, eds. (Bibliopolis, Naples, 1985).Google Scholar
  8. 8.
    E. T. Newman and T. Unti,J. Math. Phys. 3, 891 (1962).Google Scholar
  9. 9.
    R. K. Sachs,Proc. R. Soc. London A 264, 309 (1961).Google Scholar
  10. 10.
    E. T. Newman and R. Penrose,J. Math. Phys. 3, 566 (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • P. A. Hogan
    • 1
    • 2
  • I. Robinson
    • 3
  1. 1.Mathematical Physics DepartmentUniversity CollegeDublin
  2. 2.School of Theoretical PhysicsDublin Institute for Advanced StudiesIreland
  3. 3.Mathematical Sciences ProgramThe University of Texas at DallasRichardson

Personalised recommendations