Foundations of Physics

, Volume 16, Issue 5, pp 437–443 | Cite as

The birth of time

  • J. Géhéniau
  • I. Prigogine
Part IV. Invited Papers Dedicated To John Archibald Wheeler

Abstract

The formulation of the second law of thermodynamics in the frame of general relativity is reconsidered in the case of an istotropic homogeneous universe. We show that there appears then a direct link between the cosmological state of the universe, as expressed in terms of conformal coordinates, and quantities such as energy density, pressure, and entropy associated with the description of nature. In the early universe there appears a kind of phase transition due to transfer of gravitational energy to matter associated with the cosmological expansion if the universe starts with a non-Euclidian (space) state. As a result, we may envisage the possibility of a “cold big-bang model,” in which the universe would start at zero temperature and entropy. The temperature goes then through a maximum before entering the present area of cooling related to adiabatic expansion.

Keywords

Entropy Phase Transition Energy Density General Relativity Direct Link 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Misra,Proc. Natl. Acad. Sci. USA 75, 1627 (1978); B. Misra, I. Prigogine, and M. Courbage,Physica A 98, 1 (1979); E. Tirapegui and S. Martinez,Phys. Lett. A 110, 81 (1985).Google Scholar
  2. 2.
    A. D. Linde,Rep. Prog. Phys. 47, 925 (1984).Google Scholar
  3. 3.
    R. H. Brandenberger,Rev. Mod. Phys. 57, 1 (1985).Google Scholar
  4. 4.
    D. N. Page,Nature 304, 39 (1983).Google Scholar
  5. 5.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (Freeman, San Francisco, 1973), p. 1196.Google Scholar
  6. 6.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (Freeman, San Francisco, 1973), p. 860.Google Scholar
  7. 7.
    R. C. Tolman,Relativity Thermodynamics and Cosmology (Clarendon Press, Oxford, 1950).Google Scholar
  8. 8.
    S. Weinberg,Gravitation and Cosmology Principles and applications of the General Theory of Relativity (Wiley, New York, 1972).Google Scholar
  9. 9.
    Cf. B. Misra and I. Prigogine,Lett. Math. Phys. 7, 421 (1983).Google Scholar
  10. 10.
    L. Cesari,Asymptotic Behavior and Stability Problems in Ordinary Differential Equations (Springer, Berlin, 1963).Google Scholar
  11. 11.
    A. Casher and F. Englert,Phys. Lett. B 104, 117 (1981); E. Gunzig, “Self-consistent cosmogenesis,” inRelativity, Supersymmetry and Cosmology (Wiley Eastern, New Delhi, 1985); E. Gunzig and P. Nardone,Gen. Relativ. Gravit. 16, 305 (1984).Google Scholar
  12. 12.
    L. Landau and E. Lifshitz,Teoriia Polia (Nauka, Moscow, 1973);The Classical Theory of Fields, tr. by. N. Hamevmesh (Pergamon, Oxford, 1975).Google Scholar
  13. 13.
    L. Infeld and A. Schild,Phys. Rev. 68, 250 (1950).Google Scholar
  14. 14.
    G. E. Tauber,J. Math. Phys. 8, 118 (1967).Google Scholar
  15. 15.
    I. Prigogine, J. Géhéniau, and E. Gunzig, to appear inProc. Natl. Acad. Sci. USA.Google Scholar
  16. 16.
    S. R. De Groot and P. Mazur,Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • J. Géhéniau
    • 1
    • 2
  • I. Prigogine
    • 1
    • 2
  1. 1.Service de Chimie Physique IICampus PlaineBrusselsBelgium
  2. 2.Center for Studies in Statistical MechanicsThe University of TexasAustin

Personalised recommendations