Foundations of Physics

, Volume 16, Issue 4, pp 361–377 | Cite as

The problems in quantum foundations in the light of gauge theories

  • Yuval Ne'eman
Part III. Invited Papers Dedicated To John Archibald Wheeler

Abstract

We review the issues of nonseparability and seemingly acausal propagation of information in EPR, as displayed by experiments and the failure of Bell's inequalities. We show that global effects are in the very nature of the geometric structure of modern physical theories, occurring even at the classical level. The Aharonov-Bohm effect, magnetic monopoles, instantons, etc. result from the topology and homotopy features of the fiber bundle manifolds of gauge theories. The conservation of probabilities, a supposedly highly quantum effect, is also achieved through global geometry equations. The EPR observables all fit in such geometries, and space-time is a truncated representation and is not the correct arena for their understanding. Relativistic quantum field theory represents the global action of the measurement operators as the zero-momentum (and therefore spatially infinitely spread) limit of their wave functions (form factors). We also analyze the collapse of the state vector as a case of spontaneous symmetry breakdown in the apparatus-observed state interaction.

Keywords

Manifold Gauge Theory Form Factor Arena Fiber Bundle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Wheeler and W. H. Zurek,Quantum Theory of Measurement (Princeton University Press, Princeton, New Jersey, 1983).Google Scholar
  2. 2.
    J. A. Wheeler, “Delayed-Choice Experiments and the Bohr-Einstein Dialog” (American Philosophical Society Publication, 1981).Google Scholar
  3. 3.
    A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).Google Scholar
  4. 4.
    M. Schwarz,Phys. Rev. Lett. 6, 556 (1961); B. d'Espagnat,Nuovo Cimento 20, 1217 (1961); R. Armenteroset al., Proceedings, 1962 International Conference on High-Energy Physics (CERN), J. Prentki, ed. (CERN Publication, Geneva, 1962); D. Bohm and Y. Aharonov,Phys. Rev. 108, 1070 (1957).Google Scholar
  5. 5.
    J. S. Bell,Rev. Mod. Phys. 38, 447 (1966);Physics 1, 195 (1964).Google Scholar
  6. 6.
    J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,Phys. Rev. Lett. 23, 880 (1969).Google Scholar
  7. 7.
    J. F. Clauser and A. Shimony,Rep. Prog. Phys. 41, 1881 (1978); A. Aspect, P. Grangier, and G. Roger,Phys. Rev. Lett. 49, 91 (1982).CrossRefGoogle Scholar
  8. 8.
    A. Aspect, J. Dalibard, and G. Roger,Phys. Rev. Lett. 49, 1804 (1982).Google Scholar
  9. 9.
    H. Everett III,Rev. Mod. Phys. 29, 454 (1957); J. A. Wheeler,Rev. Mod. Phys. 29, 463 (1957); N. Graham, Ph.D. Thesis, University of North Carolina at Chapel Hill, 1970; B. S. DeWitt,Phys. Today 23, 30 (1970).Google Scholar
  10. 10.
    D. Bohm,Phys. Rev. 85, 166, 180 (1952); D. Bohm and B. Hiley,Found. Phys. 14, 270 (1984); L. de Broglie,Tentative d'Interpretation Causale et Nonlineaire de la Mechanique Ondulatoire (Gauthier-Villars, Paris, 1956); J. S. Bell,Found. Phys. 12, 989 (1982).Google Scholar
  11. 11.
    B. d'Espagnat,Sci. Am. 241/5, 158 (1979).Google Scholar
  12. 12.
    B. d'Espagnat,Conceptual Foundations of Quantum Mechanics (W. A. Benjamin, Menlo Park, California, 1971), Chap. III, Sects. 7 and 9.Google Scholar
  13. 13.
    H. Weyl,Z. Phys. 56, 330 (1929).Google Scholar
  14. 14.
    C. N. Yang and R. Mills,Phys. Rev. 95, 631 (1954);96, 191 (1954).Google Scholar
  15. 15.
    E. Lubkin,Ann. Phys. (N.Y.) 23, 233 (1963);J. Math. Phys. 5, 1603 (1964); A. Trautman,Rep. Math. Phys. 1, 29 (1970); H. G. Loos,Phys. Rev. D 10, 4032 (1974); T. T. Wu and C. N. Yang,Phys. Rev. D 12, 3845 (1975).Google Scholar
  16. 16.
    W. Drechsler and M. E. Mayer,Differential Geometry and Gauge Theories, Springer-Verlag Lecture Notes in Physics,Vol. 67 (Springer-Verlag, New York, 1977); S. Sternberg,Lectures on Differential Geometry (Prentice-Hall, Englewood Cliffs, New Jersey, 1964); Y. Ne'eman,Symétries Jauges et Variétés de Groupe (University of Montréal Press, Montréal, 1979).Google Scholar
  17. 17.
    Y. Ne'eman,Proc. Natl. Acad. Sci. U.S.A. 80, 7051 (1983).Google Scholar
  18. 18.
    J. Thierry-Mieg,J. Math. Phys. 21, 2834 (1980);Nuovo Cimento A 56, 396 (1980); Y. Ne'eman and J. Thierry-Mieg,Proc. Natl. Acad. Sci. U.S.A. 77, 720 (1980);Nuovo Cimento A 71, 104 (1982); L. Beaulieu and J. Thierry-Mieg,Nucl. Phys. B 197, 477 (1982).Google Scholar
  19. 19.
    G. Curci and R. Ferrari,Nuovo Cimento A,35, 1, 273 (1978).Google Scholar
  20. 20.
    Y. Aharonov and D. Bohm,Phys. Rev. 115, 485 (1959);123, 1511 (1961);125, 2192 (1962);130, 1625 (1963); W. Ehrenberg and R. E. Siday,Proc. Phys. Soc. London B 62, 8 (1949).Google Scholar
  21. 21.
    R. G. Chambers,Phys. Rev. Lett. 5, 3 (1960).Google Scholar
  22. 22.
    G. Morandi and E. Menossi,Eur. J. Phys. 5, 49 (1984).Google Scholar
  23. 23.
    R. P. Feynman,Rev. Mod. Phys. 29, 337 (1948); R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).Google Scholar
  24. 24.
    C. Morette-DeWitt, A. Maheshwari, and B. Nerlin,Phys. Rep. 50, 255 (1979); M. S. Marinov,Phys. Rep. 60, 1 (1980).Google Scholar
  25. 25.
    C. N. Yang,Phys. Rev. Lett. 33, 455 (1974).Google Scholar
  26. 26.
    L. H. Ford and A. Vilenkin,J. Phys. A: Math. Gen. 14, 2353 (1981).Google Scholar
  27. 27.
    Y. Ne'eman and T. Regge,Phys. Lett. B 74, 54 (1978);Riv. Nuovo Cimento 1, #5 (series 3), 1 (1978); Y. Ne'eman, E. Takasugi, and J. Thierry-Mieg,Phys. Rev. D 22, 2371 (1980).Google Scholar
  28. 28.
    J. Thierry-Mieg and Y. Ne'eman,Ann. Phys. (N.Y.) 123, 247 (1979).Google Scholar
  29. 29.
    G. 't Hooft,Nucl. Phys. B 79, 276 (1974); A. Polyakov,JETP Lett. 20, 194 (1974); J. Arafune, P. G. D. Freund, and C. J. Goebel,J. Math. Phys. 16, 433 (1975).CrossRefGoogle Scholar
  30. 30.
    Y. Ne'eman,Phys. Lett. B 81, 190 (1979); D. B. Fairlie,Phys. Lett. B 82, 97 (1979); Y. Ne'eman and J. Thierry-Mieg, inDifferential Geometric Methods in Mathematical Physics, P. L. Garcia, A. Perez-Rendon, and J. M. Souriau, eds., Springer-Verlag Lecture Notes in Math., Vol. 836 (Springer-Verlag, New York, 1980), pp. 318–348;Proc. Natl. Acad. Sci. U.S.A. 79, 7068 (1982).Google Scholar
  31. 31.
    A. Polyakov,Phys. Lett. B 59, 82 (1975); A. Belavin, A. Polyakov, A. Schwartz, and Y. Tyupkin,Phys. Lett. B 59, 85 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Yuval Ne'eman
    • 1
    • 2
  1. 1.Center for Particle TheoryThe University of Texas at AustinAustin
  2. 2.Sackler Faculty of Exact SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations