Studia Logica

, Volume 45, Issue 1, pp 39–53 | Cite as

A cut-free gentzen-type system for the logic of the weak law of excluded middle

  • Branislav R. Boričić


The logic of the weak law of excluded middleKC p is obtained by adding the formula ℸA ∨ ℸ ℸA as an axiom scheme to Heyting's intuitionistic logicH p . A cut-free sequent calculus for this logic is given. As the consequences of the cut-elimination theorem, we get the decidability of the propositional part of this calculus, its separability, equality of the negationless fragments ofKC p andH p , interpolation theorems and so on. From the proof-theoretical point of view, the formulation presented in this paper makes clearer the relations betweenKC p ,H p , and the classical logic. In the end, an interpretation of classical propositional logic in the propositional part ofKC p is given.


Mathematical Logic Computational Linguistic Classical Logic Propositional Logic Sequent Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. G. Anderson,Superconstructive propositional calculi with extra axiom schemecontaining one variable,Zeitschrift für mathematische Logik und Grunds lagen der Mathematik, 18 (1972), pp. 113–130.Google Scholar
  2. [2]
    W. Craig,Linear reasoning. A new form of the Herbrand-Gentzen theorem,The Journal of Symbolic Logic, 22 (1957), pp. 250–268.Google Scholar
  3. [3]
    D. M. Gabbay, Semantic proof of the Craig interpolation theorem for intuitio nistic logic and extensions,Logic Colloquium '69, North-Holland, Amsterdam, 1971, pp. 391–410 andThe Journal of Symbolic Logic, 42 (1977), pp. 269–271.Google Scholar
  4. [4]
    D. M. Gabbay,Semantical Investigations in Heyting's Intuitionistic Logic, D. Reidel, Dordrecht, 1981.Google Scholar
  5. [5]
    L. Henkin,An extension of the Craig-Lyndon interpolation theorem,The Journal of Symbolic Logic, 28 (1963), pp. 201–216.Google Scholar
  6. [6]
    T. Hosoi,On intermediate logics III,Journal of Tsuda College, 6 (1974), pp. 23–38.Google Scholar
  7. [7]
    V. A. Jankov,Some superconstructive propositional calculi,Soviet Mathematics, Doklady, 4 (1963), pp. 1103–1105. (Orig.:Доклады Академии наук CCCP, 151 (1963), pp. 796–798.)Google Scholar
  8. [8]
    V. A. Jankov,The calculus of the weak “law of excluded middle”,Math. USSR Izvestija, 2 (1968), pp. 997–1004, (1970). (Orig.:Иавестия Академии наук CCCP, 32 (1968), pp. 1044–1051.)Google Scholar
  9. [9]
    E. G. K. López-Escobar,On the interpolation theorem for logic of constant do mains,The Journal of Symbolic Logic, 46 (1981), pp. 87–88 and 48 (1983), pp. 595–599.Google Scholar
  10. [10]
    R. C. Lyndon,An interpolation theorem in the predicate calculus,Pacific Journal of Mathematics, 9 (1959), pp. 129–142.Google Scholar
  11. [11]
    L. L. Maximova,craig interpolation theorem and amalgamable varieties,Soviet Mathematics, Doklady, 18 (1977), pp. 1550–1553. (Orig.:Доклады Академии наук CCCP, 237 (1977), pp. 1281–1284.)Google Scholar
  12. [12]
    L. L. Maximova,Interpolation properties of superintuitionistic logics,Studia Logica, 38 (1979), pp. 419–428.Google Scholar
  13. [13]
    Л. J1. МАКСИМОВА,Интерполяуионная теорема Луноона в модальных логиках, Математическая логика и теория алгорифмов, Академия наук CCCP —Сибирское отделение, Наука, Москва, 1982, pp. 45–55.Google Scholar
  14. [14]
    C. Rauszer,On a certain cut-free axiomatization of some intermediate logics,The Journal of Symbolic Logic, 49 (1984), p. 703.Google Scholar
  15. [15]
    O. Sonobe,A Gentzen-type formulation of some intermediate prepositional logics,Journal of Tsuda College, 7 (1975), pp. 7–14.Google Scholar
  16. [16]
    M. E. Szabo ed.,The Collected Papers of Gerhard Gentzen, North-Holland, Amsterdam, 1969.Google Scholar
  17. [17]
    M. E. Szabo,Algebra of Proofs, North-Holland, Amsterdam, 1978.Google Scholar
  18. [18]
    G. Takeuti,Proof Theory, North-Holland, Amsterdam, 1975.Google Scholar
  19. [19]
    T. Umezawa,On intermediate propositional logics,The Journal of Symbolic Logic, 24 (1959), pp. 20–36.Google Scholar
  20. [20]
    T. Umezawa,On logics intermediate between intuitionistic and classical predicate logic,The Journal of Symbolic Logic, 24 (1959), pp. 141–153.Google Scholar
  21. [21]
    S. Zachorowski,Remarks on interpolation property for intermediate logics,Reports on Mathematical Logic, 10 (1978), pp. 139–146.Google Scholar

Copyright information

© Polish Academy of Sciences 1986

Authors and Affiliations

  • Branislav R. Boričić
    • 1
  1. 1.Ekonomski FakultetUniverzitet u BeograduBeogradJugoslavija

Personalised recommendations