Skip to main content
Log in

Characterization of dimyristoylphosphatidylcholine liposome aggregates induced by dextran sulfate and La3+ by fluorescence spectroscopy

  • Fluorescence of Membranes
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The addition of dextran sulfate (DS) to DMPC vesicles in the presence of di- and trivalent cations leads to a strong aggregation, resulting in a stack-like arrangement of the opposing membrane surfaces as shown by freeze-fracture electron microscopy. The strong aggregation is connected with a lipid mixing process, especially in the presence of La3+ (measured by the NBD/Rh assay). The extent of lipid mixing depends on the molecular weight of DS and size of the DMPC vesicles. Additionally, a decrease in the surface dielectric constant of DMPC vesicles [measured by the emission shift of the fluorescent probe, dansylphosphatidyl-ethanolamine (DPE)] was observed. A direct dependence on the molecular weight (MW) of DS exists: the higher their MW, the higher the blue emission shift of the DPE probe. The results are discussed in terms of the theory proposed by Ohki and Arnold, which connects the decrease of the surface dielectric constant with the interaction parameters of phospholipid membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. G. Bungenberg de Jong, and R. F. Westerkamp (1931)Biochem. Z. 234, 367–400.

    Google Scholar 

  2. J. Sunamoto, K. Iwamoto, H. Kondo, and S. Shinkai (1980)J. Biochem. 88, 1219–1226.

    PubMed  Google Scholar 

  3. I. Voszka, S. Györgyi, and M. Bihari-Varga (1989)Chem. Phys. Lipids 51, 67–71.

    PubMed  Google Scholar 

  4. K. Arnold, S. Ohki, and M. Krumbiegel (1990)Chem. Phys. Lipids 55, 301–307.

    PubMed  Google Scholar 

  5. Y. C. Kim and T. Nishida (1977)J. Biol. Chem. 252, 1243–1249.

    PubMed  Google Scholar 

  6. O. Zschörnig, K. Arnold, W. Richter, and S. Ohki (1992)Chem. Phys. Lipids 63, 15–22.

    PubMed  Google Scholar 

  7. J. E. Morris (1979)Exp. Cell Res. 120.

  8. M. Krumbiegel and K. Arnold (1990)Chem. Phys. Lipids 54, 1–7.

    PubMed  Google Scholar 

  9. M. Krumbiegel, H. Machill, O. Zschörnig, D. Wiegel and K. Arnold (1990)Stud. Biophys. 136, 71–80.

    Google Scholar 

  10. S. Ohki, K. Arnold, N. Srinivasakumar and T. D. Flanagan (1991)Biomid. Biochim. Acta 50, 199–206.

    Google Scholar 

  11. M. Bihari-Varga, J. Szfatisz, S. Gal (1981)Atherosclerosis 39, 19–23.

    PubMed  Google Scholar 

  12. S. Ohki and K. Arnold (1990)J. Membr. Biol. 114, 195–203.

    PubMed  Google Scholar 

  13. A. D. Bangham, M. W. Hill and N. G. A. Miller (1974)Methods Membr. Biol. 1, 1–68.

    Google Scholar 

  14. D. K. Struck, D. Hoekstra and R. E. Pagano (1981)Biochim. Biophys. Acta 649, 751.

    PubMed  Google Scholar 

  15. H. Ellens, J. Bentz and F. C. Szoka (1985)Biochemistry 24, 3099–3106.

    PubMed  Google Scholar 

  16. Y. Kimura and A. Ikegami (1985).J. Membr. Biol. 85, 225–231.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zschörnig, O., Richter, W., Krumbiegel, M. et al. Characterization of dimyristoylphosphatidylcholine liposome aggregates induced by dextran sulfate and La3+ by fluorescence spectroscopy. J Fluoresc 4, 373–375 (1994). https://doi.org/10.1007/BF01881461

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01881461

Key Words

Navigation