Journal of Fluorescence

, Volume 4, Issue 4, pp 331–336 | Cite as

Fluorescence intensity and anisotropy decays of the DNA stain Hoechst 33342 resulting from one-photon and two-photon excitation

  • Ignacy Gryczynski
  • Joseph R. Lakowicz
Fluorescence Imaging and Microscopy

Abstract

We examined the steady-state and time-resolved fluorescence spectral properties of the DNA stain Hoechst 33342 for one-photon (OPE) and two-photon (TPE) excitation. Hoechst 33342 was found to display a large cross section for two-photon excitation within the fundamental wavelength range of pyridine 2 and rhodamine 6G dye lasers, 690 to 770 and 560 to 630 nm, respectively. The time-resolved measurements show that intensity decays are similar for OPE- and TPE. The anisotropy decay measurements of Hoechst 33342 in ethanol revealed the same correlation times for TPE as observed for OPE. However, the zero-time anisotropies recovered from anisotropy decay measurements are 1.4-fold higher for TPE than for OPE. The anisotropy spectra of Hoechst 33342 were examined in glycerol at −20°C, revealing limiting values close to the theoretical limits for OPE (0.4) and TPE (0.57). The steady-state anisotropy for OPE decreases in the shorter-wavelength region (R6G dye laser, 280–315 nm), but the two-photon anisotropy for 560 to 630-nm excitation remains as high as in the long-wavelength region (690–770 nm). This result suggests that one-photon absorption is due to two electronic, but only one transition contributes to the two-photon absorption over the wavelength range from 580 to 770 nm. Our demonstration of these favorable two-photon properties for Hoechst 33342, and the high photostability of the dye reported by other laboratories, suggests that this dye will be valuable for time-resolved studies of DNA with TPE and for two-photon fluorescence microscopy.

Key Words

Hoechst 33342 one-photon excitation two-photon excitation anisotropy decay time-resolved fluorescence frequency-domain DNA 

Abbreviations used

bis(MSB)

ρ-bis(O-methylstyryl)benzene

DAPI

4′,6-diamidino-2-phenylindole, hydrochloride

HOE

Hoechst 33342, bis-benzimide, 2,5′-bi-1H-benzimidazole, 2′-(4-ethoxyphenyl)-5-(4-methyl-1-piperazinyl)

OPE

one-photon excitation

TPE

two-photon excitation

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Latt and G. Stetten (1976)J. Histochem. Cytochem. 24, 24–30.PubMedGoogle Scholar
  2. 2.
    I. W. Taylor (1980)J. Histochem. Cytochem. 28, 1021–1027.PubMedGoogle Scholar
  3. 3.
    J. Kapuscinski (1990)J. Histochem. Cytochem. 38, 1323–1329.PubMedGoogle Scholar
  4. 4.
    D. J. Arndt-Jovin and T. M. Jovin (1977)J. Histochem. Cytochem. 25, 585–590.PubMedGoogle Scholar
  5. 5.
    E. S. Critser and N. L. First (1986)Stain Technol. 61, 1–9.PubMedGoogle Scholar
  6. 6.
    H. M. Shapiro (1981)Cytometry 2, 143–151.PubMedGoogle Scholar
  7. 7.
    M. Poot, T. J. Kavanagh, H. C. Kang, R. P. Haugland, and P. S. Rabinovitch (1991)Cytometry 12, 184–192.PubMedGoogle Scholar
  8. 8.
    F. Otto and K. C. Tsou (1985)Stain Technol. 60, 7–16.PubMedGoogle Scholar
  9. 9.
    A. Bernheim and R. Miglierina (1989)Hum. Genet. 83, 189–196.PubMedGoogle Scholar
  10. 10.
    D. J. Arndt-Jovin and T. M. Jovin (1990)Cytometry 11, 80–88.PubMedGoogle Scholar
  11. 11.
    J. R. Quintana, A. A. Lipanov, and R. E. Dickerson (1991)Biochemistry 30(42), 10294–10306.PubMedGoogle Scholar
  12. 12.
    C. H. Chen, A. Mazumder, J. F. Constant, and D. S. Sigman (1993)Bioconjugate Chem. 4(1), 69–77.Google Scholar
  13. 13.
    S. Kumar, T. Joseph, M. P. Singh, Y. Bathini, and J. W. Lown (1992)J. Biomol. Struct. Dynam. 9(5), 853–880.Google Scholar
  14. 14.
    A. Fede, A. Labhardt, W. Bannwarth, and W. Leupin (1991)Biochemistry 30(48), 11377–11388.PubMedGoogle Scholar
  15. 15.
    J. R. Lakowicz, I. Gryczynski, E. Danielsen, and J. K. Frisoli (1992)Chem. Phys. Lett. 194, 282–287.Google Scholar
  16. 16.
    J. R. Lakowicz and I. Gryczynski (1993)Biophys. Chem. 45, 1–6.Google Scholar
  17. 17.
    J. R. Lakowicz, I. Gryczynski, J. Kusba, and E. Danielson (1992)J. Fluoresc. 2, 247–258.Google Scholar
  18. 18.
    J. R. Lakowicz and I. Gryczynski (1992)J. Fluoresc. 2, 117–121.Google Scholar
  19. 19.
    M. J. Sepaniak and E. S. Yeung (1977)Anal. Chem. 49, 1554–1556.Google Scholar
  20. 20.
    M. J. Wirth and F. E. Lytle (1977)Anal. Chem. 49, 2954–3057.Google Scholar
  21. 21.
    R. R. Birge (1986)Acc. Chem. Res. 19, 138–146.Google Scholar
  22. 22.
    S. P. Jiang (1989)Prog. React. Kinet. 15, 77–92.Google Scholar
  23. 23.
    A. A. Rehms and P. R. Callis (1987)Chem. Phys. Lett. 1490, 83–89.Google Scholar
  24. 24.
    W. Denk, J. H. Strickler, and W. W. Webb (1990)Science 248, 73–76.PubMedGoogle Scholar
  25. 25.
    D. W. Piston, D. R. Sandison, and W. W. Webb (1992)Proc. SPIE 1640, 379–389.Google Scholar
  26. 26.
    S. M. Kennedy and F. E. Lytle (1986)Anal. Chem. 58, 2643–2647.Google Scholar
  27. 27.
    J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. Berndt, and M. L. Johnson (1992)Anal. Biochem. 202, 316–330.PubMedGoogle Scholar
  28. 28.
    J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson (1992)Cell Calcium 13, 131–147.PubMedGoogle Scholar
  29. 29.
    Molecular Probes Catalogue, Molecular Probes, Eugene, OR.Google Scholar
  30. 30.
    J. R. Lakowicz, G. Laczko, and I. Gryczynski (1986)Rev. Sci. Instrum. 57, 2499–2506.Google Scholar
  31. 31.
    G. Laczko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and J. R. Lakowicz (1990)Rev. Sci. Instrum. 61, 2331–2337.Google Scholar
  32. 32.
    J. R. Lakowicz, I. Gryczynski, Z. Gryczynski, E. Danielsen, and M. J. Wirth (1992)J. Phys. Chem. 96, 3000–3006.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Ignacy Gryczynski
    • 1
  • Joseph R. Lakowicz
    • 1
  1. 1.Center for Fluorescence Spectroscopy, Department of Biological ChemistryUniversity of Maryland School of MedicineBaltimore

Personalised recommendations