Skip to main content
Log in

Application of angle-resolved fluorescence depolarization in muscle research

  • Fluorescence Imaging and Microscopy
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Angle-resolved fluorescence depolarization (AFD) experiments have been used for over a decade in studies of fluorescent molecules in macroscopically aligned systems such as lipid bilayers and stretched polymer films. The importance of this technique lies in the fact that it affords the determination of both the second- and the fourth-rank order parameters of the orientational distribution of the probe molecules in the sample. Here we apply the technique to the study of the orientational distribution of crossbridges in muscle fibers. This orientational distribution is particularly relevant in muscle research, as crossbridge rotation is commonly regarded to be the driving mechanism in force development. An unfortunate consequence of the fact that the crossbridges have an average orientation of approximately 45o relative to the fiber axis is that the values of the second-rank order parameter 〈P 2〉 of the crossbridge distribution are close to 0. Therefore, knowledge of 〈P 4〉 is essential for a reliable reconstruction of the form of the distribution function. AFD of dyelabeled muscle was measured under rigor and relaxation conditions. The results indicate that no significant changes in depolarization take place upon a transition from the rigor to the relaxed state in the muscle and seem not to support the rotating crossbridge model, which postulates a clear change of orientation of the crossbridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. E. Huxley (1969)Science 164, 1356–1366.

    PubMed  Google Scholar 

  2. A. F. Huxley and R. M. Simmons (1971)Nature 233, 533–538.

    PubMed  Google Scholar 

  3. G. H. Pollack (1990)Muscles & Molecules. Uncovering the Principles of Biological Motion, Ebner & Sons, Seattle, WA.

    Google Scholar 

  4. J. M. Squire (1990)Molecular Mechanisms in Muscular Contraction, Macmillan Press, London.

    Google Scholar 

  5. D. D. Thomas (1993)Biophys. J. 65, 21–22.

    PubMed  Google Scholar 

  6. R. Cooke (1986)CRC Rev. Biol. 21, 53–118.

    Google Scholar 

  7. R. D. Ludescher and D. D. Thomas (1988)Biochemistry 27, 3343–3351.

    PubMed  Google Scholar 

  8. T. P. Burghardt and K. Ajtai (1990) in J. Squire (Ed.),Molecular Mechanisms in Muscular Contraction, Macmillan Press, London, pp. 211–239.

    Google Scholar 

  9. R. A. Stein, R. D. Ludescher, P. S. Dahlberg, P. G. Fajer, R. L. H. Bennett, and D. D. Thomas (1990)Biochemistry 29, 10023–10031.

    PubMed  Google Scholar 

  10. T. Yanagida (1985)J. Musc. Res. Cell Mot. 6, 43–52.

    Google Scholar 

  11. L. B. Å. Johansson and G. Lindblom (1980)Q. Rev. Biophys. 13, 63–118.

    PubMed  Google Scholar 

  12. C. Zannoni, A. Arcioni, and P. Cavatorta (1983)Chem. Phys. Lip. 32, 279.

    Google Scholar 

  13. M. Van Gurp, H. van Langen, G. van Ginkel, and Y. K. Levine (1988) in B. Samori and E. W. Thulstrup (Eds.),Polarized Spectroscopy of Ordered Systems, Kluwer Academic Press, Dordrecht, p. 455.

    Google Scholar 

  14. J. Borejdo, O. Assulin, T. Ando, and S. Putnam (1982)J. Mol. Biol. 158, 391–414.

    PubMed  Google Scholar 

  15. B. W. van der Meer, R. P. H. Kooyman, and Y. K. Levine (1982)Chem. Phys. 66, 39–50.

    Google Scholar 

  16. U. A. van der Heide, B. Orbons, H. C. Gerritsen, and Y. K. Levine (1992)Eur. Biophys. J. 21, 263–272.

    PubMed  Google Scholar 

  17. U. A. van der Heide, H. C. Gerritsen, I. P. Trayer, and Y. K. Levine (1992) SPIE Meeting on Time Resolved Laser Spectroscopy in Biochemistry III.SPIE 1640, 681–689.

    Google Scholar 

  18. E. L. De Beer, R. L. F. Gründeman, A. J. Wilhelm, C. J. Caljouw, D. Klepper, and P. Schiereck (1988)Am. J. Physiol. 254, C491-C497.

    PubMed  Google Scholar 

  19. A. Fabiato and F. Fabiato (1979)J. Physiol. (Paris) 75, 463–505.

    Google Scholar 

  20. U. A. van der Heide (1993)A Fluorescence Depolarization Study of Crossbridge Rotation in Skeletal Muscle, Thesis, Utrecht University, Utrecht.

    Google Scholar 

  21. R. D. Levine and M. Tribus (1979)The Maximum Entropy Formalism, MIT Press, Cambridge, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Heide, U.A., Gerritsen, H.C., de Beer, E.L. et al. Application of angle-resolved fluorescence depolarization in muscle research. J Fluoresc 4, 323–326 (1994). https://doi.org/10.1007/BF01881448

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01881448

Key Words

Navigation