Skip to main content
Log in

Analysis of cell surface molecular distributions and cellular signaling by flow cytometry

  • Fluorescence Imaging and Microscopy
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Flow cytometry is a fast analysis and separation method for large cell populations, based on collection and processing of optical signals gained on a cell-by-cell basis. These optical signals are scattered light and fluorescence. Owing to its unique potential ofStatistical data analysis and sensitive monitoring of (micro)heterogeneities in large cell populations, flow cytometry—in combination with microscopic imaging techniques—is a powerful tool to study molecular details of cellular signal transduction processes as well. The method also has a widespread clinical application, mostly in analysis of lymphocyte subpopulations for diagnostic (or research) purposes in diseases related to the immune system. A special application of flow cytometry is the mapping of molecular interactions (proximity relationships between membrane proteins) at the cell surface, on a cell-by-cell basis. We developed two approaches to study such questions; both are based ondistance-dependent quenching of excited state fluorophores (donors) by fluorescent or dark (nitroxide radical) acceptors via Förstertype dipole-dipole resonance energy transfer (FRET) and long-range electron transfer (LRET) mechanisms, respectively. A critical evaluation of these methods using donor- or acceptor-conjugated monoclonal antibodies (or their Fab fragments) to select the appropriate cell surface receptor or antigen will be presented in comparison with other approaches for similar purposes. The applicability of FRET and LRET for two-dimensional antigen mapping as well as for detection of conformational changes in extracellular domains of membrane-bound proteins is discussed and illustrated by examples of several lymphoma cell lines. Another special application area of flow cytometry is the analysis of different aspects of cellular signal transduction, e.g., changes of intracellular ion (Ca2+, H+, Na+) concentrations, regulation of ion channel activities, or more complex physiological responses of cell to external stimuli via correlated fluorescence and scatter signal analysis, on a cell-by-cell basis. This way different signaling events such as changes in membrane permeability, membrane potential, cell size and shape, ion distribution, cell density, chromatin structure, etc., can be easily and quickly monitored over large cell populations with the advantage of revealing microheterogeneities in the cellular responses. Flow cytometry also offers the possibility to follow the kinetics of slow (minute- and hour-scale) biological processes in cell populations. These applications are illustrated by the example of complex flow cytometric analysis of signaling in extracellular ATP-triggered apoptosis (programmed cell death) of murine thymic lymphocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Melamed, P. F. Mullaney, and M. L. Mendelsohn (Eds.) (1979)Flow Cytometry and Sorting, John Wiley & Sons, New York.

    Google Scholar 

  2. H. M. Shapiro (1985)Practical Flow Cytometry, Alan R. Liss, New York.

    Google Scholar 

  3. M. A. Van Dilla, P. N. Dean, O. D. Laerum, and M. R. Melamed (Eds.) (1985)Flow Cytometry: Instrumentation and Data Analysis, Academic Press, London.

    Google Scholar 

  4. L. A. Herzenberg, R. G. Sweet, and L. A. Herzenberg (1976)Sci. Am. 234(3), 108.

    PubMed  Google Scholar 

  5. D. J. Arndt-Jovin and T. M. Jovin (1978)Annu. Rev. Biophys. Bioeng. 7, 527.

    PubMed  Google Scholar 

  6. M. J. Fulwyler (1980)Blood Cells 6, 173.

    PubMed  Google Scholar 

  7. O. D. Laerum and T. Farsund (1981)Cytometry 2, 1.

    PubMed  Google Scholar 

  8. J. A. Steinkamp (1984)Rev. Sci. Instrum. 55, 1375.

    Google Scholar 

  9. K. A. Ault (1983)Diagnost. Immunol. 1, 2.

    Google Scholar 

  10. E. J. Lovett, III, B. Schnitzer, D. F. Keren, A. Flint, J. L. Hudson, and K. D. McClatchey (1984)Lab. Invest. 50, 115.

    PubMed  Google Scholar 

  11. F. Traganos (1984)Cancer Invest. 2(2), 149.

    PubMed  Google Scholar 

  12. F. Traganos (1984)Cancer Invest. 2(3), 239.

    PubMed  Google Scholar 

  13. K. A. Muirhead, P. K. Horan, and G. Poste (1985)Bio/Technology 3, 337.

    Google Scholar 

  14. D. R. Parks, L. L. Lanier, and L. A. Herzenberg (1986) in D. M. Weir, C. C. Blackwell, L. A. Herzenberg, and L. A. Herzenberg (Eds.),Handbook of Experimental Immunology, Blackwell Scientific, Edinburgh. Vol. 1, pp. 29.1.

    Google Scholar 

  15. L. Mátyus and M. Edidin (1991) in J. R. Lakowicz (Ed.),Topics in Fluorescence Spectroscopy, Plenum Press, New York, p. 441.

    Google Scholar 

  16. A. N. Glazer and L. Stryer (1983)Biophys. J. 43, 383.

    PubMed  Google Scholar 

  17. B. Prezelin and F. I. Haxo (1976)Planta (Berl.) 128, 133.

    Google Scholar 

  18. J. E. Aubin (1979).J. Histochem. Cytochem. 27, 36.

    PubMed  Google Scholar 

  19. R. C. Benson, R. A. Meyer, M. E. Zaruba, and G. M. McKhann (1979).J. Histochem. Cytochem. 27, 44.

    PubMed  Google Scholar 

  20. J. A. Steinkamp and C. C. Stewart (1986)Cytometry 7, 566.

    PubMed  Google Scholar 

  21. M. Roederer and R. F. Murphy (1986)Cytometry 7, 558.

    PubMed  Google Scholar 

  22. S. Alberti, D. R. Parks, and L. A. Herzenberg (1987)Cytometry 8, 114.

    PubMed  Google Scholar 

  23. J. P. Corsetti, S. V. Sotirchos, C. Cox, J. W. Cowles, J. F. Leary, and N. Blumburg (1988)Cytometry 9, 539.

    PubMed  Google Scholar 

  24. T. Förster (1949)Z. Naturforsch. A. Astrophys. Phys. Phys. Chem. 4, 321.

    Google Scholar 

  25. R. A. Marcus and N. Sutin (1985)Biochim. Biophys. Acta 811, 265.

    Google Scholar 

  26. L. Mátyus (1992)J. Photochem. Photobiol. B Biol. 12, 323.

    Google Scholar 

  27. J. Matkó, A. Jenei, L. Mátyus, M. Ameloot, and S. Damjanovich (1993)J. Photochem. Photobiol. B Biol. 19, 69.

    Google Scholar 

  28. L. Stryer (1978)Annu. Rev. Biochem. 47, 819.

    PubMed  Google Scholar 

  29. S. Damjanovich, J. Szöllósi, and L. Trón (1992)Immunol. Today 13, A12.

    PubMed  Google Scholar 

  30. G. Vereb, R. E. Dale, L. Mátyus, L. Bene, G. Panyi, Zs. Bacsó, M. Balázs, J. Matkó, C. Pieri, M. Ameloot, J. Szöllősi, R. Gáspár, and S. Damjanovich (1994)J. Mol. Recogn. (in press).

  31. L. Trón, J. Szöllósi, S. Damjanovich, H. Helliwell, D. J. Arndt-Jovin, and T. M. Jovin (1984)Biophys. J. 45, 929.

    Google Scholar 

  32. R. Zidovetzki, Y. Yarden, J. Schlessinger, and T. M. Jovin (1981)Proc. Natl. Acad. Sci. USA 78, 6981.

    PubMed  Google Scholar 

  33. R. E. Dale, J. Eisinger, and W. E. Blumberg (1979)Biophys. J. 26, 161.

    Google Scholar 

  34. R. A. Marcus (1956)J. Chem. Phys. 24, 966.

    Google Scholar 

  35. D. L. Dexter (1953)J. Chem. Phys. 21, 836.

    Google Scholar 

  36. J. J. Hopfield (1974)Proc. Natl. Acad. Sci. USA 71, 3640.

    Google Scholar 

  37. P. Maróti (1993)J. Photochem. Photobiol. B. Biol. 19, 235.

    Google Scholar 

  38. J. N. Betts, D. N. Beratan, and J. N. Onuchic (1992)J. Am. Chem. Soc. 114, 4043.

    Google Scholar 

  39. J. Matkó, K. Ohki, and M. Edidin (1991)Biophys. J. 59, 126a.

    Google Scholar 

  40. J. Matkó, K. Ohki, and M. Edidin (1992)Biochemistry 31, 703.

    PubMed  Google Scholar 

  41. S. A. Green, D. J. Simpson, G. Zhou, P. S. Ho, and N. V. Blough (1990)J. Am. Chem. Soc. 112, 7337.

    Google Scholar 

  42. J. Matkó, A. Jenei, T. Wei, and M. Edidin (1994)Cytometry (in press).

  43. J. Matkó, Y. Bushkin, T. Wei, and M. Edidin (1994)J. Immunol. 152, 3353.

    PubMed  Google Scholar 

  44. A. Chakrabarti, J. Matkó, N. A. Rahman, B. G. Barisas, and M. Edidin (1992)Biochemistry 31, 7182.

    PubMed  Google Scholar 

  45. K. Wyatt and R. J. Cherry (1992)Biochemistry 31, 4650.

    PubMed  Google Scholar 

  46. S. Papp, S. Pikula, and A. Martonosi (1987)Biophys. J. 51, 205.

    PubMed  Google Scholar 

  47. M. Edidin and T. Wei (1982)J. Cell Biol. 95, 458.

    PubMed  Google Scholar 

  48. S. S. Chan, D. J. Arndt-Jovin, and T. M. Jovin (1979)J. Histochem. Cytochem. 27, 56.

    PubMed  Google Scholar 

  49. J. Szöllósi, L. Trón, S. Damjanovich, H. Helliwell, D. J. Arndt-Jovin, and T. M. Jovin (1984)Cytometry 5, 210.

    PubMed  Google Scholar 

  50. J. Matkó, J. Szöllósi, L. Trón, and S. Damjanovich (1988)Q. Rev. Biophys. 21, 479.

    PubMed  Google Scholar 

  51. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson (1989)Molecular Biology of the Cell, Garland, New York & London, Chap. 12.

    Google Scholar 

  52. H. M. Shapiro (1988)Practical Flow Cytometry, 2nd ed., Alan R. Liss Inc., New York.

    Google Scholar 

  53. M. R. Melamed, T. Lindmo, and M. L. Mendelsohn (Eds.) (1990)Flow Cytometry and Sorting, Wiley & Liss, New York.

    Google Scholar 

  54. A. Waggoner (1986) in D. Lansing Taylor, A. S. Waggoner, F. Lanni, R. F. Murphy, and R. R. Birge (Eds.),Application of Fluorescence in Biomedical Sciences, Alan R. Liss, New York, p. 3.

    Google Scholar 

  55. R. Y. Tsien (1989)Methods Cell Biol. 30, 127.

    PubMed  Google Scholar 

  56. R. P. Haugland (1992–1994)Handbook of Molecular Probes, Molecular Probes, Eugene, OR.

    Google Scholar 

  57. M. Edidin (1989)Methods Cell Biol. 29, 87.

    PubMed  Google Scholar 

  58. T. M. Chused, H. A. Wilson, B. E. Seligmann, and R. Y. Tsien (1986) in D. Lansing Taylor, A. S. Waggoner, F. Lanni, R. F. Murphy, and R. R. Birge (Eds.),Application of Fluorescence in Biomedical Sciences, Alan R. Liss, New York, p. 531.

    Google Scholar 

  59. J. Matkó, P. Nagy, Gy. Panyi, Gy. Vereb Jr., L. Bene, L. Mátyus, and S. Damjanovich (1993)Biochem. Biophys. Res. Commun. 191, 378.

    PubMed  Google Scholar 

  60. G. A. Smith, J. C. Metcalfe, and S. D. Clarke (1993)J. Chem. Soc. Perkin Trans. 2, 1195.

    Google Scholar 

  61. G. T. Rijkers, L. B. Justement, A. W. Griffioen, and J. C. Cambier (1990)Cytometry 11, 923.

    PubMed  Google Scholar 

  62. P. A. Vandenberghe and J. L. Ceuppens (1990).J. Immunol. Methods 127, 197.

    PubMed  Google Scholar 

  63. M. G. Ormerod, X.-M. Sun, R. G. Snovden, R. Davies, H. Fearnhead, and G. M. Cohen (1993)Cytometry 14, 595.

    PubMed  Google Scholar 

  64. C. Dive, C. D. Gregory, D. J. Phipps, D. L. Evans, A. E. Milner, and A. H. Wyllie (1992)Biochim. Biophys. Acta 1133, 275.

    PubMed  Google Scholar 

  65. V. N. Afanasyev, B. A. Korol, N. P. Matylevich, V. A. Pechatnikov, and S. R. Umanski (1993)Cytometry 14, 603.

    PubMed  Google Scholar 

  66. L. Mátyus, G. Szabó Jr., I. Resli, R. Gáspár Jr., and S. Damjanovich (1984)Acta Biochim. Biophys. Acad Sci. Hung. 19, 209.

    PubMed  Google Scholar 

  67. Z. Darzynkiewicz, S. Bruno, G. Del Bino, W. Gorczyca, M. A. Hotz, P. Lassota, and F. Traganos (1992)Cytometry 13, 795.

    PubMed  Google Scholar 

  68. B. G. Pinsky, J. J. Ladasky, J. R. Lakowicz, K. Berndt, and R. A. Hoffman (1993)Cytometry 13, 123.

    Google Scholar 

  69. J. A. Steinkamp and H. A. Crissman (1993)Cytometry 14, 210.

    PubMed  Google Scholar 

  70. D. M. Jenis, A. L. Stepanowski, O. C. Blair, D. E. Burger, and A. C. Sartorelli (1984)J. Cell Physiol. 121, 501.

    PubMed  Google Scholar 

  71. J. Szöllósi, L. Mátyus, L. Trón, M. Balázs, I. Ember, M. J. Fulwyler, and S. Damjanovich (1987)Cytometry 8, 120.

    PubMed  Google Scholar 

  72. S. Damjanovich, L. Trón, J. Szöllósi, R. Zidovetzki, W. L. C. Vaz, F. Regateiro, D. J. Arndt-Jovin, and T. M. Jovin (1983)Proc. Natl. Acad. Sci. USA 80, 5985.

    PubMed  Google Scholar 

  73. J. Szöllósi, S. Damjanovich, C. K. Goldman, M. J. Fulwyler, A. Aszalós, G. Goldstein, and T. A. Waldmann (1987)Proc. Natl. Acad. Sci. USA 84, 7246.

    PubMed  Google Scholar 

  74. J. Szöllósi, F. M. Brodsky, M. Balázs, P. Nagy, L. Trón, M. J. Fulwyler, and S. Damjanovich (1989)J. Immunol. 143, 208.

    PubMed  Google Scholar 

  75. A. P. Harel-Bellan, P. Krief, L. Rimsky, W. L. Farrar, and Z. Mishal (1990)Biochem. J. 268, 35.

    PubMed  Google Scholar 

  76. T. Liegler, J. Szöllósi, W. Hyun, and R. S. Goodenow (1991)Proc. Natl. Acad. Sci USA 88, 6755.

    PubMed  Google Scholar 

  77. R. S. Mittler, S. J. Goldman, G. L. Spitalny, and S. J. Burakoff (1989)Proc. Natl. Acad. Sci. USA 86, 8531.

    PubMed  Google Scholar 

  78. R. S. Mittler, B. M. Rankin, and P. A. Kiener (1991)J. Immunol. 147, 3434.

    PubMed  Google Scholar 

  79. J.-P. Gorvel, Z. Mishal, F. Liegey, A. Rigal, and S. Maroux (1989)J. Cell Biol. 108, 2193.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matkó, J., Mátyus, L., Szöllösi, J. et al. Analysis of cell surface molecular distributions and cellular signaling by flow cytometry. J Fluoresc 4, 303–314 (1994). https://doi.org/10.1007/BF01881445

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01881445

Key Words

Navigation