Journal of Biological Physics

, Volume 11, Issue 4, pp 103–110 | Cite as

A mass polarizability molecular beam spectrometer

  • Herbert A. Pohl
  • Joe S. Crane


A molecular beam spectrometer using dielectrophoresis is described which should be useful in studies of molecular polarizabilities, dipole moments, rotational energy states, and reaction rates. The special electrode system produces a constant force over a wide spatial region (hence is “isomotive”) on nonpolar and simple polar molecules. Design optima and calculations of the obtainable forces, beam intensities, and resolutions are given for some typical molecules (methane, naphthalene, hydrogen chloride) for the proposed instrument. The isomotive field geometry affords a gain in beam strength over other designs, permitting the use of velocity-selected beams in a spectrometer having a circular beam path. It is capable of separating molecules on the basis of either mass or polarizability.


Methane Dipole Moment Naphthalene Design Optimum Constant Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker, R.: Sauter, F., 1964.Electromagnetic Fields and Interactions, New York: Blaisdell Publishing Co., 111.Google Scholar
  2. Brodie, I. 1964.J. Appl. Phys. 35, 2324.Google Scholar
  3. Brodie, I. Personal correspondence with authors.Google Scholar
  4. Crane, J. S. 1966.Molecular Beam Spectrometer Using Dielectrophoresis. M. S. Thesis, Oklahoma State University.Google Scholar
  5. Fraser, R. 1936.Molecular Rays. Cambridge: Cambridge University Press.Google Scholar
  6. Fricke, G. 1955.Z. Physik. 141. 166.Google Scholar
  7. Goodrich, G. W.; Wiley, W. C. 1961.Rev. Sci. Instr. 32, 846.Google Scholar
  8. Hauser, W. 1965.Introduction to the Principles of Mechanics. Reading, Mass.: Addison-Wesley.Google Scholar
  9. Herzberg, G. 1950.Spectra of Diatomic Molecules. New York: D. Van Nostrand, 2nd ed., 307.Google Scholar
  10. Hughes, H. K. 1947.Phys. Rev. 72, 718.Google Scholar
  11. Pickard, W. F. 1965.Progress in Dielectrics, VI. J. G. Birks and J. Hart, eds., New York: Academic Press, 23.Google Scholar
  12. Pohl, H. A. 1951.J. Appl. Phys. 22, 869.Google Scholar
  13. Pohl, H. A. 1958.J. Appl. Phys. 29, 1182.Google Scholar
  14. Pohl, H. A.; Schwar, J. P. 1959.J. Appl. Phys. 30, 69.Google Scholar
  15. Pohl, H. A. 1961.J. Appl. Phys. 32, 1784.Google Scholar
  16. Pohl, H. A. 1960.J. Electrochem. Soc. 107, 386.Google Scholar
  17. Pohl, H. A. 1960.Sci. Am. 203, 107.Google Scholar
  18. Pohl, H. A.; Plymale, C. E. 1960.J. Electrochem. Soc. 107, 390.Google Scholar
  19. Pohl, H. A.; Schwar, J. P. 1960.J. Electrochem. Soc. 107, 383.Google Scholar
  20. Pohl, H. A.; Hawk, I. 1966.Science 152, 647.Google Scholar
  21. Pohl, H. A. 1978.Dielectrophoresis, The Behavior of Matter in Nonuniform Electric Fields. London: Cambridge University Press.Google Scholar
  22. Pohl, H. A.; Crane, J. S. 1971.Biophys. J. 11, 711.Google Scholar
  23. Ramo, S.; Whinnery, J. R. 1953.Fields and Waves in Radio. New York: John Wiley and Sons, 2nd ed., 133.Google Scholar
  24. Ramsey, N. F. 1956.Molecular Beams. Oxford: Clarendon Press.Google Scholar
  25. Reynolds, J. H. 1956.Rev. Sci. Instr. 27, 928.Google Scholar
  26. Scheffers, H. 1939.Physik. Z. 40, 1.Google Scholar
  27. Tasman, H.; Boerboom, A. Kistenmaker, J. 1963.Mass Spectrometry. New York: McGraw-Hill, ed. C. McDowell.Google Scholar
  28. Trischka, J. W. 1948.Phys. Rev. 74, 718.Google Scholar
  29. Wessel, G. 1953.Phys. Rev. 92, 641.Google Scholar
  30. Wrede, E. 1927.Z. Physik. 44, 261.Google Scholar

Copyright information

© Forum Press, Inc 1983

Authors and Affiliations

  • Herbert A. Pohl
    • 1
  • Joe S. Crane
    • 1
  1. 1.Department of PhysicsOklahoma State UniversityStillwater

Personalised recommendations