Zeitschrift für Physik A Atoms and Nuclei

, Volume 320, Issue 2, pp 341–346 | Cite as

Inverse scattering solution of the Chew-Low equation

  • K. Nakano


Techniques for solving the inverse scattering problem are applied to the Chew-Low equation to obtain the nucleon form factor directly from the experimental phase shifts. A new dispersion relation is derived for the P11 wave because of its sign-changing phase shift. A self-consistent solution for each channel is obtained, but the universality of form factor is not confirmed. Also, an iterative procedure based on Omnes' method is developed in order to solve coupled-channel, singular integral equations.


Integral Equation Elementary Particle Phase Shift Form Factor Dispersion Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chew, G.F.: Phys. Rev. 95, 1669 (1954)Google Scholar
  2. 1a.
    Low, F.E.: Phys. Rev.97, 1392 (1955)Google Scholar
  3. 1b.
    Chew, G.F., Low, F.E.: Phys. Rev.101, 1570 (1956)Google Scholar
  4. 1c.
    Wick, G.C.: Rev. Mod. Phys.27, 339 (1955)Google Scholar
  5. 1d.
    Schweber, S.S.: An introduction to relativistic quantum field theory. New York: Harper & Row 1961Google Scholar
  6. 2.
    Salzman, G., Salzman, F.: Phys. Rev.108, 1619 (1957)Google Scholar
  7. 2a.
    Layson, W.M.: Nuovo Cimento20, 1207 (1961)Google Scholar
  8. 3.
    Ernst, D.J., Johnson, M.B.: Phys. Rev. C17, 247 (1978)Google Scholar
  9. 3a.
    McLeod, R.J., Ernst, D.J.: Phys. Lett.119B, 277 (1982)Google Scholar
  10. 3b.
    McLeod, R.J.,Ernst, D.J.: Phys. Rev. C29, 906 (1984)Google Scholar
  11. 4.
    Fuda, M.G.: Phys. Rev. C27, 1693 (1983)Google Scholar
  12. 5.
    Dover, C.B., Lemmer, R.H.: Phys. Rev. C14, 2211 (1976)Google Scholar
  13. 5a.
    Miller, G.A.: Phys. Rev. C14, 2230 (1976)Google Scholar
  14. 5b.
    Wei, N.-C., Banerjee, M.K.: Phys. Rev. C22, 2052 (1980)Google Scholar
  15. 5c.
    Theberge, S., Thomas, A.W., Miller, G.A.: Phys. Rev. D22, 2838 (1980)Google Scholar
  16. 5d.
    Mizutani, T., Fayard, C., Lamot, G.H., Nahabetian, S.: Phys. Rev. C24, 2633 (1981)Google Scholar
  17. 5e.
    Oset, E., Toki, H., Weise, W.: Phys. Rep.83, 282 (1982) Reiner, M.J.: PreprintGoogle Scholar
  18. 6.
    Dover, C.B., Ernst, D.J., Friedenberg, R.A., Thaler, R.M.: Phys. Rev. Lett.33, 728 (1974)Google Scholar
  19. 7.
    Ernst, D.J., Miller, G.A.: Phys. Rev. C12, 1962 (1975)Google Scholar
  20. 8.
    Coronis, C., Landau, R.H.: Phys. Rev. C24, 605 (1981)Google Scholar
  21. 9.
    Fuda, M.G.: Phys. Rev. C27, 614 (1981)Google Scholar
  22. 10.
    Nakano, K.: Phys. Rev. C27, 1162 (1983); Phys. Rev. C27, 1401 (1983)Google Scholar
  23. 11.
    Muskhelishvili, N.I.: Singular integral equations. Groningen: Noordhoff 1977Google Scholar
  24. 12.
    Omnès, R.: Nuovo Cimento8, 316 (1958)Google Scholar
  25. 13.
    Nakano, K.: Phys. Rev. C24, 561 (1981)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • K. Nakano
    • 1
  1. 1.Theoretische KernphysikUniversität HamburgGermany

Personalised recommendations