Skip to main content
Log in

Two-state curve crossing processes involving rotational coupling in the Na +2 molecular ion

  • Published:
Zeitschrift für Physik A Atoms and Nuclei

Abstract

We examine the relative utility of the Landau-Zener, phase integral, and semiclassical Magnus approximations for processes involving a real crossing of two potential curves. As an example we consider rotational coupling in Na +2 . Numerical calculations for the ¦3p〉→¦3s〉 quenching process and for ¦3p〉→¦3d〉 excitation agree well with recent experiments in the energy range 20 eV≦EK≦50 eV. Simple expressions forS-matrix elements, differential and total cross sections in these approximations depend only on accurate evaluation of a few JWKB phases. For the total cross section further simplification of the Magnus results yields a useful semiempirical formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bähring, A., Hertel, I.V., Meyer, E., Schmidt, H.: Z. Phys. A — Atomic and Nuclei312, 293 (1983)

    Article  Google Scholar 

  2. Bähring, A., Hertel, I.V., Meyer, E., Meyer, W., Spies, N., Schmidt, H.: J. Phys. B17, 2859 (1984)

    Google Scholar 

  3. Olson, R.E.: Comm. At. Mol. Phys.9, 231 (1980)

    Google Scholar 

  4. Allan, R.J., Dickinson, A.S., McCarroll, R.: J. Phys. B16, 467 (1983)

    Google Scholar 

  5. Zwaan, A.: Thesis, Utrecht (1929)

  6. Stueckelberg, E.C.G.: Helv. Phys. Acta5, 369 (1932)

    Google Scholar 

  7. Bates, D.R.: Proc. R. Soc. London Ser. A257, 22 (1960)

    Google Scholar 

  8. Nikitin, E.E.: In: Chemische Elementarprozesse. Hartmann, H. (ed.), p.43. Berlin, Heidelberg, New York: Springer 1968

    Google Scholar 

  9. Bandrauk, A.D., Child, M.S.: Mol. Phys.19, 95 (1970)

    Google Scholar 

  10. Crothers, D.S.F.: Adv. Phys.20, 405 (1971)

    Google Scholar 

  11. Olson, R.E., Smith, F.T.: Phys. Rev. A3, 1607 (1971)

    Google Scholar 

  12. Erratum: Phys. Rev. A6, 526 (1972)

  13. Nikitin, E.E., Reznikov, A.I.: Phys. Rev. A6, 522 (1972)

    Google Scholar 

  14. Bárány, A.: UNITP N∘. 25, Institute of Theoretical Physics, Uppsala University, Sweden (1979)

    Google Scholar 

  15. Bobbio, S.M., Doverspike, L.D., Champion, R.L.: Phys. Rev. A7, 526 (1973)

    Google Scholar 

  16. Guérin, H.G., Tsien, T.P., En, B.C., Olson, R.E.: Phys. Rev. A9, 995 (1974)

    Google Scholar 

  17. Penner, A.P., Wallace, R.: Phys. Rev. A7, 1007 (1973)

    Google Scholar 

  18. Child, M.S.: Molecular collision theory. London: Academic Press 1974

    Google Scholar 

  19. Janev, R.K.: Adv. At. Mol. Phys.12, 1 (1976)

    Google Scholar 

  20. Korsch, H.J., Krüger, H.: Mol. Phys.39, 51 (1980)

    Google Scholar 

  21. Bárány, A., Crothers, D.S.F.: Phys. Scr.23, 1096 (1981)

    Google Scholar 

  22. Connor, J.N.L., Farrelly, D.: J. Chem. Phys.75, 2831 (1981)

    Google Scholar 

  23. Child, M.S.: In: Atomic and molecular collision theory. NATO ASI, Cortona, Italy, Gianturco, F. (ed.), p. 274. New York: Plenum Press 1982

    Google Scholar 

  24. Korsch, H.J.: Mol. Phys.49, 325 (1983)

    Google Scholar 

  25. Russek, A.: Phys. Rev. A4, 1918 (1971)

    Google Scholar 

  26. Lichten, W.: Phys. Rev.131, 229 (1963)

    Google Scholar 

  27. Smith, F.T.: Phys. Rev.179, 111 (1969)

    Google Scholar 

  28. Grosser, J.: J. Phys. B14, 1449 (1981)

    Google Scholar 

  29. Fritsch, W., Wille, U.: J. Phys. B11, L43 (1978)

    Google Scholar 

  30. Namiki, M., Yagisawa, H., Nakamura, H.: J. Phys. B13, 743 (1980)

    Google Scholar 

  31. Nakamura, H., Namiki, M.: J. Phys. Soc. Jpn.49, 843 (1980)

    Google Scholar 

  32. Nakamura, H., Namiki, M.: Phys. Rev. A24, 2963 (1981)

    Google Scholar 

  33. Nakamura, H.: Phys. Rev. A26, 3125 (1982)

    Google Scholar 

  34. McMillan, W.L.: Phys. Rev. A4, 69 (1971)

    Google Scholar 

  35. Henriet, A., Masnou-Seeuws, F.: Chem. Phys. Lett.101, 535 (1983)

    Google Scholar 

  36. Müller, W., Meyer, W.: J. Chem. Phys.80, 3311 (1984)

    Google Scholar 

  37. Johnson, B.R.: J. Comput. Phys.13, 445 (1973)

    Google Scholar 

  38. Johnson, B.R.: Chem. Phys. Lett.27, 289 (1974)

    Google Scholar 

  39. McCarroll, R., Valiron, P.: Astron, Astrophys.53, 83 (1976)

    Google Scholar 

  40. Lester, M.A.: J. Comp. Phys.3, 322 (1968)

    Google Scholar 

  41. Shipsey, E.J., Browne, J.C., Olson, R.E.: Phys. Rev. A11, 1334 (1975)

    Google Scholar 

  42. Faist, M.B., Levine, R.D.: J. Chem. Phys.64, 2953 (1976)

    Google Scholar 

  43. Faist, M.B., Bernstein, R.B.: J. Chem. Phys.64, 2971 (1976)

    Google Scholar 

  44. Born, M., Wolf, E.: Principles of optics. 5th Edn. Oxford: Pergamon 1975

    Google Scholar 

  45. Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series and products. London: Academic Press 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors wish to acknowledge financial support under the Deutsche Forschungsgemeinschaft SFB 91 “Energy transfer in atomic and molecular collisions”. We also thank Dr. Ruth Möhlenkamp who took part in frequent discussions. The log-derivative program was written by Dr. K.-E. Thylwe during his stay in Kaiserslautern.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allan, R.J., Korsch, H.J. Two-state curve crossing processes involving rotational coupling in the Na +2 molecular ion. Z Physik A 320, 191–205 (1985). https://doi.org/10.1007/BF01881267

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01881267

Keywords

Navigation