, Volume 36, Issue 5, pp 263–273 | Cite as

Demonstration of the Fc-receptor of blood cells by soluble peroxidase-anti-peroxidase (PAP) complexes

  • D. Huhn
  • P. Andreewa
  • H. Rodt
  • E. Thiel
  • M. Eulitz
Original Papers


The Fc-receptor of normal human leukocytes, of CLL-cells, and of hematopoietic cell lines was demonstrated with soluble peroxidase-anti-peroxidase (PAP) complexes. In about 9% of normal lymphocytes an almost continuous, strong labeling of the cell membrane was established. Some of these lymphocytes were characterized by a peculiar uniform fine structure. The percentage of PAP-labeled monocytes was in the range of 25%, neutrophils nearly 100%, eosinophils 0%, CLL-cells 10%. Labeled portions of the membrane were interiorized from monocytes. The lymphoid cell-line Daudi established from a Burkitt's lymphoma appeared almost negative, the cell line K 562 established from a myeloid leukemia in 75% of the cells strongly positive. PAP-labeling was not influenced by preincubation with trypsine or with neuraminidase; it was negative when PAP-F(ab)2 was used. Results of PAP-labeling were not always in agreement with EA-rosettes or with agg-Ig.

Key words

Membrane markers Peroxidase-immunochemistry Fc-receptor 



heat-aggregated human immunoglobulin (for demonstration of Fc-receptor)


anti-T-cell immunglobulin


bovine serum albumin


chronic lymphatic leukemia


rosettes with human erythrocytes sensitized by IgG (for demonstration of Fc-receptor)




peroxidase-conjugated anti-peroxidase-antibody


phosphate-buffered saline



Nachweis des Fc-Rezeptors von Blutzellen durch lösliche Peroxidase-anti-Peroxidase (PAP)-Komplexe


Der Fc-Rezeptor von normalen menschlichen Leukozyten, CLL-Zellen und hämatopoetischen Zell-Linien wurde mittels löslicher Peroxidase-anti-Peroxidase (PAP)-Komplexe untersucht. Etwa 9% normaler Lymphozyten zeigten eine starke, nahezu ununterbrochene Membranmarkierung. Einige dieser stark markierten Lymphozyten waren durch eine gemeinsame, auffällige Feinstruktur gekennzeichnet. PAP-positive Monozyten lagen in der Größenordnung von 25%, Neutrophile fast 100%, Eosinophile 0%, CLL-Zellen 10%. Markierte Membrananteile wurden von Monozyten ins Zellinnere aufgenommen. Die lymphoide Zell-Linie Daudi war kaum mit PAP zu markieren, die myeloide Zell-Linie K 562 war zu 75% stark positiv. Die PAP-Markierung war durch Vorinkubation mit Trypsin oder Neuraminidase nicht zu beeinflussen; Kontrollen mit PAP-F(ab)2 blieben vollständig negativ. Die Ergebnisse der PAP-Markierung stimmten mit EA-Rosetten und agg-Ig nicht immer überein.


Membranmarkeirung Peroxidase Immunchemic Fc-Rezeptor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramson, N., Gelfand, E.W., Jandl, J.H., Rosen, F.S.: The interaction between human monocytes and red cells. Specificity for IgG subclasses and IgG fragments. J. exp. Med.132, 1207–1215 (1970)PubMedGoogle Scholar
  2. 2.
    Basten, A., Miller, J.F.A.P., Sprent, J., Pye, J.: A receptor for antibody on B lymphocytes. I. Method of detection and functional significance. J. exp. Med.125, 610–626 (1972)Google Scholar
  3. 3.
    Basten, A., Miller, J.F.A.P., Abraham, R.: Relationship between Fc receptors, antigenbinding sites on T and B cells, and H-2 complex-associated determinants. J. exp. Med.141, 547–560 (1975)PubMedGoogle Scholar
  4. 4.
    Cossmann, J., Schnitzer, B., Deegan, M.J.: Immunologic surface markers in non-Hodgkin's lymphomas. Amer. J. Path.1, 19–27 (1977)Google Scholar
  5. 5.
    Dickler, H.B., Kunkel, H.G.: Interaction of aggregatedγ-globulin with B lymphocytes. J. exp. Med.136, 191–196 (1972)PubMedGoogle Scholar
  6. 6.
    Dickler, H.B.: Studies of the human lymphocyte receptor for heat aggregated or antigen-complexed immunoglobulin. J. exp. Med.140, 508–522 (1974)PubMedGoogle Scholar
  7. 7.
    Dickler, H.B.: Lymphocyte binding of aggregated immunoglobulin. Scand. J. Immunol. Suppl.5, 91–97 (1976)Google Scholar
  8. 8.
    Documenta Geigy. Wissenschaftliche Tabellen, pp. 170, 177, 1960Google Scholar
  9. 9.
    Douglas, S.D., Huber, H.: Electron microscopic studies of human monocyte and lymphocyte interaction with immunoglobulin- and complement-coated erythrocytes. Exp. Cell Res.70, 161–172 (1972)PubMedGoogle Scholar
  10. 10.
    Ferrarini, M., Tonda, G.P., Risso, A., Viale, G.: Lymphocyte membrane receptors in human lymphoid leukemias. Europ. J. Immunol.5, 89–93 (1975)Google Scholar
  11. 11.
    Frieß, A.E., Liebich, H.-G.: Ultrahistochemische Untersuchungen an der Glykokalyx von Lymphozyten aus dem Ductus thoracicus der Ratte. Z. Zellforsch.134, 143–152 (1972)PubMedGoogle Scholar
  12. 12.
    Frøland, S.S., Natvig, J.B.: Identification of three different human lymphocyte populations by surface markers. Transplant. Rev.16, 114–162 (1973)PubMedGoogle Scholar
  13. 13.
    Frøland, S.S., Natvig, J.B., Michaelsen, T.E.: Binding of aggregated IgG by human B lymphocytes independent of Fc receptors. Scand. J. Immunol.3, 375–380 (1974)PubMedGoogle Scholar
  14. 14.
    Huber, H., Fudenberg, H.: Receptor sites of human monocytes for IgG. Int. Arch. Allergy34, 18 (1968)PubMedGoogle Scholar
  15. 15.
    Huber, H., Douglas, S.D., Nusbacher, J., Kochwa, S., Rosenfield, R.E.: IgG subclass specificity of human monocyte receptor sites. Nature229, 419–420 (1971)PubMedGoogle Scholar
  16. 16.
    Huber, Ch., Sundström, C., Nilsson, K., Wigzell, H.: Surface receptors on human haematopoietic cell lines. Clin. exp. Immunol.25, 367–376 (1976)PubMedGoogle Scholar
  17. 17.
    Huhn, D.: Neue Organelle im peripheren Lymphozyten? Dtsch. med. Wschr.93, 2099–2100 (1968)PubMedGoogle Scholar
  18. 18.
    Jondal, M., Klein, G.: Surface markers on human B and T lymphocytes. II. Presence of Epstein-Barr virus receptors on B lymphocytes. J. exp. Med.138, 1365–1378 (1973)PubMedGoogle Scholar
  19. 19.
    Karnovsky, M.J.: The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J. Cell Biol.35, 213–236 (1967)PubMedGoogle Scholar
  20. 20.
    Klein, E., Klein, G., Nadkarni, J. S., Nadkarni, J.J., Wigzell, H., Clifford, P.: Surface IgM-kappa specificity on a Burkitt lymphoma cell in vivo and in derived culture lines. Cancer Res.28, 1300–1310 (1968)PubMedGoogle Scholar
  21. 21.
    Koziner, B., McKenzie, S., Straus, D., Clarkson, B., Good, R.A., Siegal, F.P.: Cell marker analysis in acute monocytic leukemias. Blood49, 895–901 (1977)PubMedGoogle Scholar
  22. 22.
    Lobo, P.I., Horwitz, D.A.: An appraisal of Fc receptors on human peripheral blood B and L lymphocytes. J. Immunol.117, 939–943 (1976)PubMedGoogle Scholar
  23. 23.
    Lozzio, C.B., Lozzio, B.B.: Human chronic myelogenous leukemia cell line with positive Philadelphia chromosome. Blood45, 321–334 (1975)PubMedGoogle Scholar
  24. 24.
    McKeever, P.E., Garvin, A.J., Spicer, S.S.: Immune complex receptors on cell surfaces. I. Ultrastructural demonstration on macrophages. J. Histochem. Cytochem.24, 948–955 (1976)PubMedGoogle Scholar
  25. 25.
    McKeever, P.E., Garvin, A.J., Hardin, D.H., Spicer, S.S.: Immune complex receptors on cell surfaces. II. Cytochemical evaluation of their abundance on different immune cells: Distribution, uptake, and regeneration. Amer. J. Path.84, 437–449 (1976)PubMedGoogle Scholar
  26. 26.
    Messner, R.P., Jelinek, J.: Receptors for human γG-globulin on human neutrophils. J. clin. Invest.49, 2165–2171 (1970)PubMedGoogle Scholar
  27. 27.
    Nisonoff, A., Wissler, F.C., Lipman, L.N., Woernley, D.L.: Separation of univalent fragments from the bivalent rabbit antibody molecule by reduction of disulfide bonds. Arch. Biochem. Biophys.89, 230–244 (1960)PubMedGoogle Scholar
  28. 28.
    Pichler, W.J., Knapp, W.: Chronic lymphatic leukemia cells bear IgM receptors. In: Immunological Diagnosis of Leukemias and Lymphomas. Thierfelder, S., Rodt, H., Thiel, E. (eds.) pp. 163–168. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  29. 29.
    Schmidt, M.E., Douglas, S.D.: Disappearance and recovery of human monocyte IgG receptor activity after phagocytosis. J. Immunol.109, 914–917 (1972)PubMedGoogle Scholar
  30. 30.
    Steinman, R.M., Cohn, Z.A.: The interaction of soluble horseradish peroxidase with mouse peritoneal macrophages in vitro. J. Cell Biol.55, 186–204 (1972)PubMedGoogle Scholar
  31. 31.
    Steinman, R.M., Cohn, Z.A.: The interaction of particulate horseradish peroxidase (HRP)-anti HRP immune complexes with mouse peritoneal macrophages in vitro. J. Cell Biol.55, 616–634 (1972)PubMedGoogle Scholar
  32. 32.
    Sternberger, L.A., Hardy Jr., P.H., Cuculis, J.J., Meyer, H.G.: The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigenantibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J. Histochem. Cytochem.18, 315–333 (1970)PubMedGoogle Scholar
  33. 33.
    Thiel, E., Dörmer, P., Rodt, H., Huhn, D., Bauchinger, M., Kley, H.P., Thierfelder, S.: Quantitation of T-antigenic sites and Ig-determinants on leukemic cells by microphotometric immunoautoradiography. Proof of the clonal origin of thymus-derived lymphocytic leukemias. In: Immunological Diagnosis of Leukemias and Lymphomas. Thierfelder, S., Rodt, H., Thiel, E. (eds.), pp. 131–145. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  34. 34.
    Unanue, E.R., Cerottini, J.-C.: The function of macrophages in the immune reponse. Sem. Hemat.7, 225–248 (1970)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • D. Huhn
    • 1
  • P. Andreewa
    • 1
    • 2
  • H. Rodt
    • 3
  • E. Thiel
    • 3
  • M. Eulitz
    • 3
  1. 1.Dept. of Medicine III, GroßhadernUniv of MunichMunich 70Federal Republic of Germany
  2. 2.Inst. for Haematology and Blood TransfusionMedical AcademySofiaBulgaria
  3. 3.Dept. of Immunology of the Inst. of HematologyGSF, MunichMunich 2Federal Republic of Germany

Personalised recommendations