Skip to main content
Log in

Bone mineral density in patients with cervical and trochanteric fractures of the proximal femur

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

The bone mineral density (BMD) of the proximal femur, spine and radius shaft was determined in 75 women with atraumatic fractures of the proximal femur (FXf) (average age: 70.1±9.6 years) and 51 controls of similar age. Fractures were classified as either cervical (n=36) or trochanteric (n=39) on the basis of radiographic and surgical finding. The BMD of spine and proximal femur was determined by dual-photon absorptiometry (Lunar DP3) and the BMD of the radius shaft by single photon absorptiometry. The BMD of patients with FXf was significantly decreased over all skeletal sites compared to controls of similar age. No significant correlation was found between age and the BMD of the femoral neck in patients with FXf. Patients with trochanteric FXf were older and thinner (average: age, 72.9±9.4 years; weight, 53.1±7.8 kg) compared with patients with cervical fractures (age, 67.2±8.9 years; weight, 59.3±8.3 kg). Likewise the BMD of trochanteric FXf was lower at all measured sites: femoral neck, 0.548±0.066 g/cm2 vs 0.624±0.055 g/cm2 (P<0.001); L2-L4, 0.799±0.115 g/cm2 vs 0.925±0.106 g/cm2 (P<0.001); radius shaft, 0.454±0.057 g/cm2 vs 0.502±0.083 g/cm2 (P<0.05). Of the patients with trochanteric fractures 66% had concomitant vertebral fractures, while this occurred in only 28% of the patients with cervical fractures (P (Fisher)=0.0007). In summary, females with trochanteric FXf are older, thinner, have less bone mass in all measured sites and suffer with a significantly greater frequency of vertebral fractures. These patients have a generalized osteoporosis of the skeleton. Patients with cervical FXf seem to have more specific loss of the proximal femur (regional osteoporosis). The physiopathological process leading to trochanteric and cervical fractures is probably different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Melton LJ III. Epidemiology of fractures. In: Riggs BL, Melton LJ III, (eds). Osteoporosis: etiology, diagnosis and management. New York, Raven Press, 1988;133–54

    Google Scholar 

  2. Lane JM, Cornell CN, Healey JH. Orthopaedic consequences of osteoporosis. In: Riggs, BL, Melton, LJ III, (eds). Osteoporosis: etiology, diagnosis and management. New York, Raven Press, 1988;433–55

    Google Scholar 

  3. Dretakis E, Kritsikis N, Economou K, Christodoulou N. Bilateral non-contemporary fractures of the proximal femur. Acta Orthop Scand 1981; 52:227–9

    PubMed  Google Scholar 

  4. Melton LJ III, Ilstrup DM, Beckengaugh RD, Riggs BL. Fracture recurrence: A population-based study. Clin Orthop 1982; 167:131–8.

    PubMed  Google Scholar 

  5. Finsen V, Benum P. The second hip fracture. An epidemiologic study. Acta Orthop Scand 1986; 57:431–3.

    PubMed  Google Scholar 

  6. Riggs BL, Melton LJ III. Involutional osteoporosis. N Engl J Med 1986; 314:1676–86

    PubMed  Google Scholar 

  7. Kleerekoper M, Parfitt AM, Ellis BL. Measurements of vertebral fracture rates in osteoporosis. In: Christiansen C et al. (eds). Osteoporosis. Denmark, Glostrup Hospital, 1984; 103–9.

    Google Scholar 

  8. Balseiro J, Fahey FH, Ziessman HV, Le TV. Comparison of bone mineral density of both hips. Radiology 1988; 167:151–3.

    PubMed  Google Scholar 

  9. Mautalen C, Rubin Z, Vega E, Ghiringhelli G, Fromm G. Bone mineral density of spine and femur in normal women from Buenos Aires. Medicina (Buenos Aires) 1990; 50:25–9.

    Google Scholar 

  10. Mazess RB, Barden HS, Ettinger M et al. Spine and femur density using dual-photon absorptiometry in US white women. Bone Miner 1987; 2:211–9.

    PubMed  Google Scholar 

  11. Pocock NA, Eberl S, Eisman JA et al. Dual-photon bone densitometry in normal Australian women: A cross-sectional study. Med J Aust 1987; 146:293.

    PubMed  Google Scholar 

  12. Mautalen C, Tau C, Casco C, Fromm G. Contenido mineral óseo en la población normal de Buenos Aires. Medicina (Buenos Aires) 1984; 44:356–60.

    Google Scholar 

  13. Riggs BL, Wahner HW, Seeman E et al. Changes in bone mineral density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes. J Clin Invest 1982; 70:716–723.

    PubMed  Google Scholar 

  14. Bohr H, Schaadt O. Bone mineral content of femoral bone and the lumbar spine measured in women with fractures of the femoral neck by dual-photon absorptionmetry. Clin Orthop 1983; 179:240–5.

    PubMed  Google Scholar 

  15. Härmä M, Karjalainen P, Hoikka V, Alhava E. Bone density in women with spinal and hip fractures. Acta Orthop Scand 1985; 56:380–5.

    PubMed  Google Scholar 

  16. Härmä M, Parviainen M, Koskinen T, Hoikka V, Alhava E. Bone density histomorphometry and biochemistry in patients with fractures of the hip or spine. Ann Clin Res 1987; 19:378–82.

    PubMed  Google Scholar 

  17. Firooznia H, Rafii M, Golimbu C, Schwartz MS, Ort P. Trabecular mineral content of the spine in women with hip fracture: CT measurement. Radiology 1986; 159:737–40.

    PubMed  Google Scholar 

  18. Hartwell D, Riis B, Christiansen C, Thomsen K, Johansen J, Rodbro P. Bone metabolism and bone status in osteoporotic patients. Acta Med Scand 1987; 222:453–8.

    PubMed  Google Scholar 

  19. Wooton R, Brereton P, Clark M, et al. Fractured neck of femur in the elderly: an attempt to identify patients at risk. Clin Sci 1979; 57:93–101.

    PubMed  Google Scholar 

  20. Hui S, Slemenda C, Johnston C. Baseline measurements of bone mass predicts fracture in white women. Ann Intern Med 1989; 111:355–61.

    PubMed  Google Scholar 

  21. Dequeker J. Evaluation of the usefulness of the metacarpal indices. In: Bone loss in normal and pathological conditions. Leuven: Leuven University Press, 1972;159–63.

    Google Scholar 

  22. Aitken JM. Relevance of osteoporosis in women with fracture of the femoral neck. Br Med J 1984; 288:597–601.

    Google Scholar 

  23. Cummings SR. Are patients with hip fractures more osteoporotic? Review of the evidence. Am J Med 1985; 78:487–94.

    PubMed  Google Scholar 

  24. Mazess RB, Barden HS, Ettinger M, Schultz E. Bone density of the radius, spine and proximal femur in osteoporosis. J Bone Miner Res 1988; 3:13–18.

    PubMed  Google Scholar 

  25. Norimatsu H, Mori S, Uesato T, Yoshikawa T, Katsuyama N. Bone mineral density of the spine and proximal femur in normal and osteoporotic subjects in Japan. Bone Miner 1989; 5:213–22.

    PubMed  Google Scholar 

  26. Schultz E, Libanatti C, Shook J, Kirk G, Baylink D. Femoral neck bone mineral content in hip-fractured females. Proc IV world congress of nuclear medicine (abstract 208), Buenos Aires, 1986; 34–5.

  27. Meltzer M, Lessing H, Siegel J. Bone mineral density and fracture in postmenopausal women. Calcif Tissue Int 1989; 45:142–45.

    PubMed  Google Scholar 

  28. Erikkson SAV, Widhe TL. Bone mass in women with hip fracture. Acta Orthop Scand 1988; 59:19–23.

    PubMed  Google Scholar 

  29. Sernbo I, Johnell O. Changes in bone mass and fracture type in patients with hip fractures. Clin Orthop 1989; 238:139–47.

    PubMed  Google Scholar 

  30. Gallagher JC, Melton LJ, Riggs BL, Bergstrath E. Epidemiology of fractures of the proximal femur in Rochester, Minnesota. Clin Orthop Rel Res 1980; 150:163–71.

    Google Scholar 

  31. Stevens J, Freeman PA, Nordin BEC, Barnett E. The incidence of osteoporosis in patients with femoral neck fracture. J Bone Joint Surg Br 1962; 44:520–7.

    PubMed  Google Scholar 

  32. Makin M. Osteoporosis and proximal femoral fractures in the female elderly of Jerusalem. Clin Orthop Rel Res 1987; 218:19–23.

    Google Scholar 

  33. Lips P, Netelenbos JC, Jongen MJM et al. Histomorphometric profile and vitamin D status in patients with femoral neck fracture. Metab Bone Dis Rel Res 1982; 4:85–93.

    Google Scholar 

  34. Lips P, Taconis WK, Van Ginkel FC, Netelenbos JC. Radiologic morphometry in patients with femoral neck fractures and elderly control subjects. Comparison with histomorphometric parameters. Clin Orthop 1984; 183:64–9.

    PubMed  Google Scholar 

  35. Uitewaal PJM, Lips P, Netelenbos JC. An analysis of bone structure in patients with hip fracture. Bone Miner 1987; 3:63–73.

    PubMed  Google Scholar 

  36. Elabdien B, Olerud S, Karlstrom G, Smedby B. Rising incidence of hip fracture in Uppsala, 1965–1980. Acta Orthop Scand 1984; 55:284–9.

    PubMed  Google Scholar 

  37. Nagant de Deuxchaisnes C, Devogelaer JP. Increase in the incidence of hip fractures in Belgium. Calcif Tissue Int 1988; 42:201–3.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vega, E., Mautalen, C., Gómez, H. et al. Bone mineral density in patients with cervical and trochanteric fractures of the proximal femur. Osteoporosis Int 1, 81–86 (1991). https://doi.org/10.1007/BF01880448

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01880448

Keywords

Navigation