Journal of Automated Reasoning

, Volume 7, Issue 4, pp 537–561 | Cite as

Computations in fragments of intuitionistic propositional logic

  • Dick De Jongh
  • Lex Hendriks
  • Gerard R. Renardel De Lavalette


This article is a report on research in progress into the structure of finite diagrams of intuitionistic propositional logic with the aid of automated reasoning systems for larger calculations. Afragment of a propositional logic is the set of formulae built up from a finite number of propositional variables by means of a number of connectives of the logic, among which possibly non-standard ones like ¬¬ or ↔ which are studied here. Thediagram of that fragment is the set of equivalence classes of its formulae partially ordered by the derivability relation. N.G. de Bruijn's concept of exact model has been used to construct subdiagrams of the [p, q, ∧, →, ¬]-fragment.

Key words

Intuitionistic propositional logic fragment diagram mechanical theorem proving 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beth E. W., ‘Sementic entailment and formal derivability’,Mededelingen van de Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Letterkunde, N. R.,18, (13) 309–342 (1955).Google Scholar
  2. 2.
    Curry, H. B.,Foundations of Mathematical Logic, New York (1977).Google Scholar
  3. 3.
    De Bruijn, N. G., ‘Exact finite models for minimal propositional calculus over a finite alphabet, Technological University Eindhoven, Report 75-WSK-02 (1975).Google Scholar
  4. 4.
    DeBruijn N. G., ‘An Algol program for deciding derivability in minimal propositional calculus with implication and conjunction over a three letter alphabet’, Technological University Eindhoven, Memorandum 1975–06 (1975).Google Scholar
  5. 5.
    De Jongh, D. H. J., ‘Investigations on the intuitionistic propositional calculus’, Doctoral Dissertation, University of Wisconsin (1968).Google Scholar
  6. 6.
    De Jongh, D. H. J., ‘A Characterization of the intuitionistic propositional calculus’, in A. Kino, J. Myhill and R. E. Vesley (eds.),Intuitionism and Proof Theory, Proceedings of the Summer Conference at Buffalo, N. Y., pp. 103–111 (1970).Google Scholar
  7. 7.
    De Jongh, D. H. J., ‘A class of intuitionistic connectives’, in: J. Barwise, H. J. Keisler and K. Kunen (eds.),The Kleene Symposium, North-Holland Publishing Company, pp. 103–111 (1980).Google Scholar
  8. 8.
    Diego A.,Sur les Algèbres de Hilbert, Gauthier-Villars, Paris (1966).Google Scholar
  9. 9.
    Hendriks, L., ‘Logische automaten, beslissen en bewijzen met de computer’, Master's Thesis (in Dutch), Department of Mathematics, University of Amsterdam (1980).Google Scholar
  10. 10.
    Kripke, S. A., ‘Semantical analysis of intuitionistic logic I, in J. N. Crossley and M. A. E. Dummentt (eds.),Formal Systems and Recursive Functions, Amsterdam, pp. 92–130 (1965).Google Scholar
  11. 11.
    Nishimura I., ‘On formulas of one variable in intuitionistic propositional logic’,J. Symbolic Logic,25, 327–331 (1960).Google Scholar
  12. 12.
    Rasiowa, H. and Sikorski, R.,The Mathematics of Metamathematics, Warszawa (1963).Google Scholar
  13. 13.
    Renardel de Lavalette G. R., ‘The interpolation theorem in fragments of logics’,Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series A,84, 71–86 (1981) (also published inIndagationes Mathematicae 43, 71–86 (1981)).Google Scholar
  14. 14.
    Renardel de Lavalette, G. R., ‘Interpolation in a fragment of intuitionistic propositional logic’,Logic Group Preprint Series No. 5, Department of Philosophy, University of Utrecht (1986).Google Scholar
  15. 15.
    Renardel de Lavalette, R. G., ‘Interpolation in fragments of intuitionistic propositional logic’, to appear inJ. Symbolic Logic,54 (1989).Google Scholar
  16. 16.
    Rieger N. S., ‘On the lattice theory of Brouwerian propositional Logic’,Acta Fac. Rerum Nat. Univ. Carolinae,189, 3–40 (1949).Google Scholar
  17. 17.
    Troelstra A. S. (ed.),Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Lecture Notes in Mathematics Vol, 344, Springer-Verlag, Berlin, Heidelberg, New York (1973).Google Scholar
  18. 18.
    Van Riemsdijk, H., ‘Het genereren van diagrammen’, Master's Thesis (in Dutch), Department of Mathematics, University of Amsterdam (1985).Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Dick De Jongh
    • 1
  • Lex Hendriks
    • 2
  • Gerard R. Renardel De Lavalette
    • 2
  1. 1.Department of Mathematics and Computer ScienceUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of PhilosophyUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations