A VLSI architecture for the real time computation of discrete trigonometric transforms

  • J. Canaris
Regular Papers

Abstract

The Discrete Trigonometric Transforms are defined as a class of transforms. An algorithm for calculating the Discrete Fourier Transform is extended to cover all members of the defined class. A VLSI architecture which provides for real time calculation of these transforms is presented. This architecture provides simple interconnections, identical processing elements and minimal control complexity.

Keywords

Discrete cosine transform discrete trigonometric transforms VLSI architecture Goertzel's algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.W. Cooley and J.W. Tukey, “An algorithm for the machine calculation of complex Fourier series,”Math. Computation, vol. 19, 1965, pp. 297–301.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    J.W. Cooley, P.A.W. Lewis and P.D. Welch, “Historical notes on the fast Fourier transform,”IEEE Trans. Audio Electroacoust., vol. AU-15, 1967, pp. 76–69.CrossRefGoogle Scholar
  3. 3.
    R.C. Singleton, “A method for computing the fast Fourier transform with auxiliary memory and limited high speed storage,”IEEE Trans. Audio Electroacoust., vol. AU-17, 1967, pp. 91–98.CrossRefGoogle Scholar
  4. 4.
    R.C. Singleton, “An algorithm for computing the mixed radix fast Fourier transform,”IEEE Trans. Audio Electroacoust., vol. AU-17, 1967, pp. 93–103.Google Scholar
  5. 5.
    J.A. Beraldin, T. Aboulnasr and W. Steenhart, “Efficient one-dimensional systolic array realization of the discrete Fourier transform,”IEEE Transactions on Circuits and Systems, vol. 36, 1989, pp. 95–100.CrossRefGoogle Scholar
  6. 6.
    J.A. Beraldin and W. Steenhart, “Overflow analysis of a fixed-point implementation of the Goertzel algorithm,”IEEE Transactions on Circuits and Systems, vol. 36, 1989, pp. 322–324.CrossRefGoogle Scholar
  7. 7.
    J.A. Beraldin, “VLSI systolic array architecture for the computation of the discrete Fourier transform,” M.A.Sc. thesis, University of Ottawa, Canada, 1986.Google Scholar
  8. 8.
    G. Goertzel, “An algorithm for the evaluation of finite trigonometric series,”Amer. Math. Monthly, vol. 65, 1958, pp. 34–35.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    B. Gold and C. Rader,Digital Processing of Signals, New York: McGraw-Hill, 1969.MATHGoogle Scholar
  10. 10.
    A. Oppenheim and R. Schafer,Digital Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1975.MATHGoogle Scholar
  11. 11.
    N. Ahmed, T. Natarajan and K.R. Rao, “Discrete cosine transform,”IEEE Transactions on Computers, 1974, pp. 90–93.Google Scholar
  12. 12.
    A.K. Jain, “A fast Karhunen Loeve transform for a class of stochastic processes,”IEEE Trans. Commun., vol. COM-24, 1976, pp. 1023–1029.CrossRefGoogle Scholar
  13. 13.
    R.N. Bracewell, “Discrete Hartley transform,”J. Opt. Soc. Amer., vol. 73, 1983, pp. 1832–1835.CrossRefGoogle Scholar
  14. 14.
    J. Canaris, “A VLSI architecture for the real time computation of discrete trigonometric transforms,” MSEE thesis, University of Idaho, Moscow; Idaho, 1990.Google Scholar
  15. 15.
    B.A. Bowen and W.R. Brown,Systems Design, Volume II of VLSI Systems Design for Digital Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1985.Google Scholar
  16. 16.
    S.Y. Kung, H.J. Whitehouse and T. Kailath (Eds.),VLSI and Mod-ern Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1985.Google Scholar
  17. 17.
    J. Canaris, “A high speed fixed point binary divider,”The Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, 1989, pp. 2393–2396.CrossRefGoogle Scholar
  18. 18.
    Plessey Semiconductors,” “PDSP16256/A programmable FIR filter,” Product Description, Publication No. PS2330, March 1990.Google Scholar
  19. 19.
    K. Cameron, S. Whitaker and J. Canaris, “ACE: Automatic centroid extractor for real time target tracking,”The Proceedings of the Second Annual NASA Space Engineering Research Center Symposium on VLSI Design, 1990, pp. 8.2.1–8.2.8.Google Scholar
  20. 20.
    J. Ullman,Computational Aspect of VLSI, Rockville, MD: Computer Science Press, 1984.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • J. Canaris
    • 1
  1. 1.NASA Space Engineering Research CenterAlbuquerque

Personalised recommendations