Skip to main content
Log in

Quantitative comparison of behavioral and neurophysiological responses of insects to odorants

Inferences about central nervous system processes

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

A consistent pattern of relationships emerges from comparisons of insect electroantennograms, peripheral olfactory receptor neuron responses, and behavioral responses to quantified concentrations of odorants. One consistency is that all of the different response measurements can be described by stimulus-response curves of the same form. Another is that the responses have characteristic groupings when they are plotted against odorant concentration. The pattern of relationships is exemplified in the responses ofTrichoplusia ni (Hübner),Heliothis zea (Boddie), andPlodia interpunctella (Hübner) to several pheromone components and analogs. To quantify the relevant stimulus parameters for the response comparisons, the emission rates of the stimulus delivery system were calibrated for several 12 to 17-carbon pheromone components. The stimulus-response relationships determined forT. ni, H. zea, andP. interpunctella are combined with relationships reported for other insects in the literature, and applications are discussed for the interpretation of pheromone trapping and laboratory bioassays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, T.C., Gaston, L.K., Pope, M. M., Kuenen, L.P.S., andVetter, R.S. 1981. A high efficiency collection device for quantifying sex pheromone volatilized from female glands and synthetic sources.J. Chem. Ecol. 7:961–968.

    Google Scholar 

  • Baker, T.C., Willis, M.A., Haynes, K.F., andPhelan, P.C. 1985. A pulsed cloud of sex pheromone elicits upwind flight in male moths.Physiol. Entomol. 10:257–265.

    Google Scholar 

  • Bjöstad, L.B., Gaston, L.K., andShorey, H.H. 1980. Temporal pattern of sex pheromone release by femaleTrichoplusia ni.J. Insect Physiol. 26:493–498.

    Google Scholar 

  • Boeckh, J., andBoeckh, V. 1979. Threshold and odor specificity of pheromone-sensitive neurons in the deutocerebrum ofAntheraea pernyi andA. polyphemus.J. Comp. Physiol. 132:235–242.

    Google Scholar 

  • Borst, A. 1984. Identification of different chemoreceptors by electroantennogram recording.J. Insect Physiol. 30:507–510.

    Google Scholar 

  • Brownlee, R.G., andSilverstein, R.M. 1968. A micropreparative gas chromatograph and a modified carbon skeleton determinator.Anal. Chem. 40:2077–2079.

    Google Scholar 

  • Butler, L.I., andMcDonough, L.M. 1979. Insect sex pheromones: Evaporation rates of acetates from natural rubber septa.J. Chem. Ecol. 5:825–837.

    Google Scholar 

  • Charlton, R.E., andCardé, R.T. 1982. Rate and diel periodicity of pheromone emission from female gypsy moths,Lymantria dispar (L.) determined with a glass adsorption collection system.J. Insect Physiol. 28:423–430.

    Google Scholar 

  • Elkinton, J.S., andCardé, R.T. 1984. Odor dispersion, pp. 73–91,in W.J. Bell and R.T. Cardé (eds.). Chemical Ecology of Insects. Sinour Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Elkington, J.S., Cardé, R.T., andMason, C.J. 1984. Evaluation of time-average dispersion models for estimating pheromone concentration in a deciduous forest.J. Chem. Ecol. 10:1081–1108.

    Google Scholar 

  • Fonta, C., andMasson, C. 1984. Comparative study by electrophysiology of olfactory responses in bumblebees.J. Chem. Ecol. 10:1157–1168.

    Google Scholar 

  • Green, D.M., andSwets, J.A. 1974. Signal Detection Theory and Psychophysics. Krieger, Huntington, New York.

    Google Scholar 

  • Heath, R.R., andTumlinson, J.H. 1986. Correlation of retention times on a liquid crystal capillary column with reported vapor pressures and half-lives of compounds used in pheromone formulations.J. Chem. Ecol. 12:2081–2088.

    Google Scholar 

  • Helland, I.S., Hoff, J.M., andAnderbrant, O. 1984. Attraction of bark beetles (Coleoptera: Scolytidae) to a pheromone trap. Experiment and mathematical models.J. Chem. Ecol. 10:723–752.

    Google Scholar 

  • Hirooka, Y., andSuwanai, M. 1976. Role of insect sex pheromone in mating behavior. I. Theoretical consideration on release and diffusion of sex pheromone in the air.Appl. Entomol. Zool. 11:126–132.

    Google Scholar 

  • Kaissling, K.-E. 1971. Insect olfaction, pp. 351–431, in L.M. Beidler (ed.). Handbook of Sensory Physiology, IV: Chemical Senses 1 Olfaction. Springer-Verlag, Berlin.

    Google Scholar 

  • Mankin, R.W., andMayer, M.S. 1983a. A phenomenological model of the perceived intensity of single odorants.J. Theor. Biol. 100:123–138.

    PubMed  Google Scholar 

  • Mankin, R.W., andMayer, M.S. 1983b. Stimulus-response relationships of insect olfaction: Correlations among neurophysiological and behavioral measures of response.J. Theor. Biol. 100:613–630.

    Google Scholar 

  • Mankin, R.W., andMayer, M.S. 1984. The insect antenna is not a molecular sieve.Experientia 40:1251–1252.

    Google Scholar 

  • Mankin, R.W., Vick, K.W., Mayer, M.S., andCoffelt, J.A. 1980. Anemotactic response threshold of the Indian meal moth,Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) to its sex pheromone.J. Chem. Ecol. 6:919–928.

    Google Scholar 

  • Mankin, R.W., Vick, K.W., Coffelt, J.A., andWeaver, B.A. 1983. Pheromone-mediated flight by malePlodia interpunctella (Hübner) (Lepidoptera: Pyralidae).Environ. Entomol. 12:1218–1222.

    Google Scholar 

  • Mayer, M.S. 1968. Response of single olfactory cell ofTriatoma infestans to human breath.Nature 220:924–925.

    PubMed  Google Scholar 

  • Mayer, M.S. 1973. Attraction studies of maleTrichoplusia ni (Lepidoptera: Noctuidae) with new combination of olfactometer and pheromone dispenser.Ann. Entomol. Soc. Am. 66: 1101–1196.

    Google Scholar 

  • Mayer, M.S., andMankin, R.W. 1985. Neurobiology of pheromone perception, pp. 95–144,in G.A. Kerkut and L.I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 9, Behaviour. Pergamon Press, Oxford, England.

    Google Scholar 

  • Mayer, M.S., Mankin, R.W., andLemire, G.F. 1984. Quantitation of the insect electroantennogram: measurement of sensillar contributions, elimination of background potentials, and relationship to olfactory sensation.J. Insect Physiol. 30:757–763.

    Google Scholar 

  • O'Connell, R.J., Kocsis, W.A., andSchoenfeld, R.L. 1973. Minicomputer identification and timing of nerve impulses mixed in a single recording channel.Proc. IEEE 61:1615–1621.

    Google Scholar 

  • Olsson, A.M., Jönsson, J.A., Thelin, B., andLiljefors, T. 1983. Determination of the vapor pressures of moth sex pheromone components by a gas chromatographic method.J. Chem. Ecol. 9:375–385.

    Google Scholar 

  • Schwarz, R. 1955. Über die Reichschärfe der Honigbie.Z. vergl. Physiol. 37:180–210.

    Google Scholar 

  • Sower, L.L., andFish, J.C. 1975. Rate of release of the sex pheromone of the female Indian meal moth.Environ. Entomol. 4:168–169.

    Google Scholar 

  • Sower, L.L., Gaston, L.K., andShorey, H.H. 1971. Sex pheromones of noctuid moths 26. Female release rate, male response threshold, and communication distance ofT. ni.Ann. Entomol. Soc. Am. 64:1448–1456.

    Google Scholar 

  • Stevens, S.S. 1975. Psychophysics. John Wiley & Sons, New York.

    Google Scholar 

  • Tully, J.C., andCardillo, M.J. 1984. Dynamics of molecular motion at single-crystal surfaces.Science 223:445–450.

    Google Scholar 

  • Venard, R., andPichon, Y. 1981. Etude électro-antennographique de la reponse périphérique de l'antenne deDrosophila melanogaster à des stimulations odorants.C.R. Acad. Sci. Paris 293:839–842.

    Google Scholar 

  • Venard, R., andPichon, Y. 1984. Electrophysiological analyses of the peripheral response to odors in wild type and smell deficient OLF C mutant ofDrosophila melanogaster.J. Insect Physiol. 30:1–5.

    Google Scholar 

  • Wadhams, L.J. 1982. Coupled gas chromatography-single cell recording: A new technique for use in the analysis of insect pheromones.Z. Naturforsch. 37c:947–952.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Postdoctoral fellow employed through a cooperative agreement between the Insect Attractants, Behavior, and Basic Biology Research Laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, M.S., Mankin, R.W. & Grant, A.J. Quantitative comparison of behavioral and neurophysiological responses of insects to odorants. J Chem Ecol 13, 509–531 (1987). https://doi.org/10.1007/BF01880096

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01880096

Key Words

Navigation