Journal of Fluorescence

, Volume 4, Issue 3, pp 247–250 | Cite as

lin-Benzo-ATP and-ADP: Versatile fluorescent probes for spectroscopic and biochemical studies

  • E. Grell
  • E. Lewitzki
  • C. Bremer
  • S. Kramer-Schmitt
  • J. Weber
  • A. E. Senior
Regular Articles


lin-Benzo-adenine nucleotides can act not only as probes for fluorescence studies but also as structural active site probes for enzymes. To understand the basic properties oflin-benzo-ATP and-ADP, protolysis and Mg2+ and Ca2+, binding are investigated between pH 6.2 and pH 8.5 by spectrophotometric and spectrofluorometric titrations. Based on a reaction model, a set of equilibrium constants is determined which is consistent with all available experimental results. The pK values of the Mg2+ and Ca2+ complex oflin-benzo-ATP in the chosen medium are 4.6 and 4.1, respectively, and those for the corresponding diphosphate are 3.1 and 2.8, respectively. Fluorescence and absorption spectra are reported.

Key Words

lin-Benzo-ATP lin-benzo-ADP dissociation constants Mg2+ and Ca2+ binding fluorescence spectra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. J. Leonard, A. G. Morrice, and M. A. Sprecker (1975)J. Org. Chem. 40, 356–363.PubMedGoogle Scholar
  2. 2.
    N. J. Leonard, M. A. Sprecker, and A. G. Morrice (1976)J. Am. Chem. Soc. 98, 3987–3994.PubMedGoogle Scholar
  3. 3.
    D. I. C. Scopes, J. R. Barrio, and N. L. Leonard (1977)Science 195, 296–298.PubMedGoogle Scholar
  4. 4.
    N. J. Leonard, D. I. C. Scopes, P. van Der Lijn, and J. R. Barrio (1978)Biochemistry 17, 3677–3685.PubMedGoogle Scholar
  5. 5.
    P. Van Der Lijn, J. R. Barrio, and N. J. Leonard (1978)Proc. Natl. Acad. Sci. USA 75, 4204–4208.Google Scholar
  6. 6.
    R. F. Kauffman, H. A. Lardy, J. R. Barrio, M. del C. G. Barrio, and N. J. Leonard (1978)Biochemistry 17, 3686–3692.PubMedGoogle Scholar
  7. 7.
    H. T. W. M. Van der Hijden, S. Kramer-Schmitt, E. Grell, and J. H. H. M. de Pont (1990)Biochem. J. 267, 565–572.PubMedGoogle Scholar
  8. 8.
    S. Kramer-Schmitt, Dissertation, University of Frankfurt, Frankfurt, 1989; S. Kramer-Schmitt, H. T. W. M. Van der Hijden, J. H. H. M. de Pont, and E. Grell, in preparation.Google Scholar
  9. 9.
    J. Weber, S. Schmitt, E. Grell, and G. Schäfer (1990)J. Biol. Chem. 265, 10884–10892.PubMedGoogle Scholar
  10. 10.
    J. Weber, R. S. F. Lee, E. Grell, J. G., Wise, and A. E. Senior (1992)J. Biol Chem. 267, 1712–1718.PubMedGoogle Scholar
  11. 11.
    J. Weber, R. S. F. Lee, E. Grell, and A. E. Senior (1992)Biochemistry 31, 5112–5116.PubMedGoogle Scholar
  12. 12.
    J. Weber, R. S.-F., Lee, S. Wilke-Mounts, E. Grell, and A. E. Senior (1993).J. Biol. Chem. 268, 6241–6247.PubMedGoogle Scholar
  13. 13.
    J. Weber, S. Wike-Mounts, R. S.-F. Lee, E. Grell, and A. E. Senior (1993).J. Biol. Chem. 268, 20126–20133.PubMedGoogle Scholar
  14. 14.
    R. M. Izatt and J. J. Christensen (1962).J. Phys. Chem 66, 359–361.Google Scholar
  15. 15.
    J. J. Christensen and R. M. Izatt (1962).J. Phys. Chem. 66 1030–1034.Google Scholar
  16. 16.
    R. M. Smith and A. E. Martell (1975)Critical Stability Constants, Vol. 2, Plenum Press, New York, pp. 281–283.Google Scholar
  17. 17.
    C. Bremer, Dissertation, University of Frankfurt, Frankfurt, 1992.Google Scholar
  18. 18.
    M. M. Taqui Khan and A. E. Martell (1966).J. Am. Chem. Soc. 88, 668–671.PubMedGoogle Scholar
  19. 19.
    R. C. Phillips, S. J. P. George, and R. J. Rutman (1966).J. Am. Chem. Soc. 88, 2631–2640.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • E. Grell
    • 1
  • E. Lewitzki
    • 1
  • C. Bremer
    • 1
  • S. Kramer-Schmitt
    • 1
  • J. Weber
    • 2
  • A. E. Senior
    • 2
  1. 1.Max-Planck-Institute of BiophysicsFrankfurtGermany
  2. 2.Department of BiochemistryUniversity of Rochester Medical CenterRochester

Personalised recommendations