Communications in Mathematical Physics

, Volume 25, Issue 4, pp 253–275 | Cite as

Unitary implementation of automorphism groups on von Neumann algebras

  • Herbert Halpern


A necessary and sufficient continuity condition is obtained in order that a topological group of automorphisms of a semi-finite von Neumann algebra in standard form is unitarily implemented. The methods used are extended to the study of unitary implementation for a general von Neumann algebra of those automorphism groups that commute with the one-parameter modular automorphism group.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Standard Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aarnes, J.: On the continuity of automorphic representations of groups. Commun. math. Phys.7, 332–336 (1968).Google Scholar
  2. 2.
    —— Continuity of group representations, with applications toC*-algebras. J. Functional Analysis5, 14–36 (1970).Google Scholar
  3. 3.
    Borchers, H. J.: On the implementability of automorphism groups. Commun. math. Phys.14, 305–314 (1969).Google Scholar
  4. 4.
    Bourbaki, N.: Integration, Chapters I–V, Act. Sci. Ind. no. 1175, 1244. Paris: Hermann 1965, 1967.Google Scholar
  5. 5.
    Busby, R., Smith, H.: Representations of twisted group algebras. Trans. Am. Math. Soc.149, 503–537 (1970).Google Scholar
  6. 6.
    Dixmier, J.: Applications dans les anneaux d'opérateurs. Compositio Math.10, 1–55 (1952).Google Scholar
  7. 7.
    —— Algèbres quasi-unitaires. Comment. Math. Helv.26, 275–322 (1952).Google Scholar
  8. 8.
    —— LesC*-algèbres et leurs représentations. Paris: Gauthier-Villars 1964.Google Scholar
  9. 9.
    —— Les algèbres d'opérateurs dans l'éspace Hilbertien. Paris: Gauthier-Villars 1969.Google Scholar
  10. 10.
    Doplicher, S., Kastler, D., Robinson, D.: Covariance algebras in field theory and statistical mechanics. Commun. math. Phys.3, 1–28 (1966).Google Scholar
  11. 11.
    Dunford, N., Schwartz, J.: Linear operators, Parts I and II. New York: Interscience 1957, 1963.Google Scholar
  12. 12.
    Fell, J. M. G.: An extension of Mackey's method to Banach *-algebraic bundles. Mem. Am. Math. Soc. no.90, 1–168 (1969).Google Scholar
  13. 13.
    Guichardet, A., Kastler, D.: Désintégration des états quasi-invariants desC*-algèbres. J. Math. Pures Appl.49, 349–380 (1970).Google Scholar
  14. 14.
    Henle, M.: Spatial representation of groups of automorphisms of von Neumann algebras with properly infinite commutants. Commun. math. Phys.19, 273–275 (1970).Google Scholar
  15. 15.
    Herman, R., Takesaki, M.: States and automorphism groups of operator algebras. Commun. math. Phys.19, 142–160 (1970).Google Scholar
  16. 16.
    Kadison, R. V.: Transformation of states in operator theory and dynamics. Topology3 (Suppl.) 2, 177–198 (1965).Google Scholar
  17. 17.
    Kallman, R. R.: A remark on a paper by J. F. Aarnes. Commun. math. Phys.14, 13–14 (1969).Google Scholar
  18. 18.
    —— Spatially induced groups of automorphisms of certain von Neumann algebras. Trans. Am. Math. Soc.156, 505–516 (1971).Google Scholar
  19. 19.
    Sirugue, M., Winnink, M.: Constraints imposed upon a state of a system that satisfies the K.M.S. boundary condition. Commun. math. Phys.19, 161–168 (1970).Google Scholar
  20. 20.
    Størmer, B.: Automorphisms and invariant states of operator algebras. Acta Math.127, 1–10 (1971).Google Scholar
  21. 21.
    Takesaki, M.: Tomita's theory of modular Hilbert algebras and its applications. Berlin, Heidelberg, New York: Springer 1970.Google Scholar
  22. 22.
    —— Disjointness of the KMS-states of different temperatures. Commun. math. Phys.17, 33–41 (1970).Google Scholar
  23. 23.
    Tomita, M.: Standard forms of von Neumann algebras, the Vth Functional Analysis Symposium of Math. Soc. of Japan, Sendai, 1967.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Herbert Halpern
    • 1
  1. 1.University of CincinnatiCincinnatiUSA

Personalised recommendations