Advertisement

Applied Mathematics and Mechanics

, Volume 3, Issue 2, pp 217–223 | Cite as

An analysis of the three-dimensional elastic solid with internal rectangular crack

  • Wang Kai
Article

Abstract

In this paper, the three-dimensional elastic solid with internal rectangular crack is considered. Let the crack surfaces be subjected to the equal and opposite normal tractionsp0. This problem is reduced by means of Fourier transforms to the standard set of dual integral equations with two variables. Then the formulas of analytic solution of the displacements on the crack surfaces and of the stress-intensity factors of crack border are obtained.

Keywords

Fourier Mathematical Modeling Fourier Transform Integral Equation Industrial Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ъородачев, Н. М., Контактная задача для штампа с прямоуголвным основаным, ПММ. Т. 40, вып. 3, (1976), 554–560.Google Scholar
  2. 2.
    ъородачэв, Н. М. и Галин, Л А., Контактная задач адля штампа фофноваянем в ыде узкого прямоуголвника. ПММ. Т. 38, вып. 1. (1974), 125–130.Google Scholar
  3. 3.
    ъейтмен, Х. и Эрдеий, А., Таблицы ицтегралуных преобразований, Т. 1, Hayka (1969).Google Scholar
  4. 4.
    Канторопич, Л В. и Крылов, В. И.,Approximation Method in Higher Analysis, Part I, (the Chinese Version), Science Publishing House, (1966).Google Scholar
  5. 5.
    Бейтмен. Г. и Эрдеий. А., Высшие транспендентные Функции. Т. 2 Hayka (1974).Google Scholar
  6. 6.
    Градштейн. И. С. и. Рыжик. И. М.. Таблицы интегралов. сумм. рядов и произведений. (1971).Google Scholar
  7. 7.
    Weaver, J., Three-dimensional crack analysis, Int. J. Sol. Struc., 13, (4), (1977), 321–330.Google Scholar

Copyright information

© Techmodern Business Promotion Centre 1982

Authors and Affiliations

  • Wang Kai
    • 1
  1. 1.Lanchow UniversityLanchowChina

Personalised recommendations