Communications in Mathematical Physics

, Volume 23, Issue 1, pp 1–22 | Cite as

Isotropic solutions of the Einstein-Boltzmann equations

  • R. Treciokas
  • G. F. R. Ellis


It is shown that in all solutions of the Einstein-Boltzmann equations in which the particle distribution function is isotropic about some 4-velocity field, the distortion of that velocity field vanishes; further, either its expansion or its rotation vanishes. We discuss briefly further kinetic solutions in which the energy-momentum tensor has a perfect fluid form.


Neural Network Distribution Function Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ehlers, J., Geren, P., Sachs, R.K.: J. Math. Phys.9, 1344 (1968).Google Scholar
  2. 2.
    -- Abhandl. Math. Naturw. Kl., Mainz. Akad. Wiss. Lit.11 (1961).Google Scholar
  3. 3.
    Ellis, G.F.R.: Relativistic Cosmology. In: Proceedings of the International Summer School of Physics “Enrico Fermi”, Course XLVII, (Ed. R. Sachs), London-New York: Academic Press 1971.Google Scholar
  4. 4.
    Eckart, C.: Phys. Rev.58, 919 (1940).Google Scholar
  5. 5.
    Tauber, G.E., Weinberg, J.W.: Phys. Rev.122, 1342 (1961).Google Scholar
  6. 6.
    Israel, W.: J. Math. Phys.4, 1163 (1963).Google Scholar
  7. 7.
    Ehlers, J., Sachs, R.K.: Kinetic Theory and Cosmology. In Proceedings of the Brandeis Summer Institute for Theoretical Physics, 1968.Google Scholar
  8. 8.
    —— Relativistic Kinetic Theory. In: Proceedings of the International Summer School of Physics “Enrico Fermi”, Course XLVII, (Ed. R. Sachs), London-New York: Academic Press, 1971.Google Scholar
  9. 9.
    Sasaki, M.: On the Relativistic Gases. In: Max-Planck-Festschrift. Berlin: D.V.W. 1958.Google Scholar
  10. 10.
    Anderson, J.L.: Relativistic Transport Theory via the Grad Method of Moments. In Relativity (Ed. Carmeli, M., Fickler, S.I., Witten, L.). New York-London: Plenum Press 1970.Google Scholar
  11. 11.
    Stewart, J.M.: Non-Equilibrium Relativistic Kinetic Theory. To be published.Google Scholar
  12. 12.
    Marle, C.: Ann. Inst. Henri Poincaré, Sec. A.10, 67 (1969).Google Scholar
  13. 13.
    Taub, A.H.: Ann. Inst. Henri Poincaré, Sec. A.9, 153 (1968).Google Scholar
  14. 14.
    Ehlers, J.: Ph. D. Dissertation, Hamburg University (1957).Google Scholar
  15. 15.
    Taub, A.H.: In: Proceedings of the 1967 colloque de “Fluides et champ gravitational en relativité generale, No. 170, 57, Paris: Centre National de la Recherche Scientifique 1969.Google Scholar
  16. 16.
    Ellis, G.F.R.: J. Math. Phys.8, 1171 (1967).Google Scholar
  17. 17.
    Garabedian, P.R.: Partial Differential Equations. New York: J. Wiley and Sons 1964.Google Scholar
  18. 18.
    Misner, C.W.: Astrophys. J.151, 431 (1968).Google Scholar
  19. 19.
    Hawking, S.W., Ellis, G.F.R.: Singularities, Causality and Cosmology, Cambridge University Press. To be published.Google Scholar
  20. 20.
    Sachs, R.K., Wolfe, A.: Astrophys. J.147, 73 (1967).Google Scholar
  21. 21.
    Thorne, K.S.: Astrophys. J.148, 51 (1967).Google Scholar
  22. 22.
    Hawking, S.W.: Monthly Notices Roy. Astron. Soc.142, 129 (1969).Google Scholar
  23. 23.
    Tolman, R.C.: Relativity Thermodynamics and Cosmology. Oxford: Clarendon Press 1934.Google Scholar
  24. 24.
    Ehlers, J., Rienstra, W.: Astrophys. J.155, 105 (1969).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • R. Treciokas
    • 1
  • G. F. R. Ellis
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsCambridgeEngland

Personalised recommendations