Communications in Mathematical Physics

, Volume 22, Issue 4, pp 253–258 | Cite as

Positivity and self adjointness of theP(φ)2 Hamiltonian

  • James Glimm
  • Arthur Jaffe


We give a new proof that the locally correct HamiltonianH(g) is self adjoint, and that the vacuum energyE(g)=inf spectrumH(g) satisfies −O(D)≦E(g), where 0≦g≦1 andD=diam.supp.g.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Glimm, J., Jaffe, A.: Field theory models. In: Dewitt, C., Stora, R. (Eds.) 1970 Les Houches Lectures. New York: Gordon and Breach Science Publ. 1971.Google Scholar
  2. 2.
    Nelson, E.: A quartic interaction in two dimensions. In: Goodman, R., Segal, I. (Eds.): Mathematical theory of elementary particles. Cambridge: MIT Press 1966.Google Scholar
  3. 3.
    Glimm, J.: Boson fields with nonlinear self interaction in two dimensions. Commun. math. Phys.8, 12–25 (1968).Google Scholar
  4. 4.
    —— Jaffe, A.: The λ(φ4)2 quantum field theory without cutoffs III: The physical vacuum. Acta Math.125, 203–267 (1970).Google Scholar
  5. 5.
    —— —— A λφ4 quantum field theory without cutoffs. I. Phys. Rev.176, 1945–51 (1968).Google Scholar
  6. 6.
    Rosen, L.: A λφ2n field theory without cutoffs. Commun. math. Phys.16, 157–183 (1970).Google Scholar
  7. 7.
    Segal, I.: Construction of nonlinear local quantum processes: I. Ann. Math.92, 462–481 (1970).Google Scholar
  8. 8.
    Høegh-Krohn, R., Simon, B.: Hypercontractive semigroups and two dimensional self-coupled bose fields. J. Functional Analysis, To appear.Google Scholar
  9. 9.
    Masson, D., McClary, W.: On the self adjointness of the (g(x) φ4)2 Hamiltonian. Commun. math. Phys.21, 71–74 (1971).Google Scholar
  10. 10.
    Konrady, J.: Almost positive perturbations of positive self adjoint operators. To appear.Google Scholar
  11. 11.
    Federbush, P.: A convergent expansion for the resolvent of :φ4:1+1. To appear.Google Scholar
  12. 12.
    Masson, D.: Essential self adjointness of semi bounded operators: An extension of the Kato-Rellich theorem. To appear.Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • James Glimm
    • 1
  • Arthur Jaffe
    • 2
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew York
  2. 2.Lyman Laboratory of PhysicsHarvard UniversityCambridge

Personalised recommendations