Periodica Mathematica Hungarica

, Volume 29, Issue 2, pp 163–168 | Cite as

Multiplication modules and projective modules

  • P. F. Smith
Article

Mathematics subject classification numbers

1991 Primary 13C10 Secondary 13C13 

Key words and phrases

Projective module multiplication module endomorphism ring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. D. Anderson, Some remarks on multiplication ideals,Math. Japonica 25 (1980), 463–469.Google Scholar
  2. [2]
    F. W. Anderson andK. R. Fuller,Rings and Categories of Modules, (Springer-Verlag New York 1973).Google Scholar
  3. [3]
    Z. A. El-Bast andP. F. Smith, Multiplication moduls,Comm. in Algebra 16 (1988), 755–779.Google Scholar
  4. [4]
    G. M. Low andP. F. Smith, Multiplication modules and ideals,Comm. in Algebra 18 (1990), 4353–4375.Google Scholar
  5. [5]
    A. G. Naoum, On the ring of endomorphisms of a finitely generated multiplication module,Period. Math. Hungar. 21 (1990), 249–255.Google Scholar
  6. [6]
    A. G. Naoum andM. A. K. Hasan, On finitely generated projective and flat ideals in commutative rings,Period. Math. Hungar. 16 (1985), 251–260.Google Scholar
  7. [7]
    B. L. Osofsky, Noninjective cyclic modules,Proc. Amer. Math. Soc. 19 (1968), 1383–1384.Google Scholar
  8. [8]
    P. F. Smith, Some remarks on multiplication modules,Arch. Math. 50 (1988), 223–235.Google Scholar
  9. [9]
    W. W. Smith, Projective ideals of finite type,Canad. J. Math. 21 (1969), 1057–1061.Google Scholar

Copyright information

© Akadémiai Kiadó 1994

Authors and Affiliations

  • P. F. Smith
    • 1
  1. 1.Department of MathematicsUniversity of GlasgowGlasgowScotland U. K.

Personalised recommendations