Abstract
The naturally occurring autofluorescence of cells and tissues is based on biomolecules containing intrinsic fluorophores, such as porphyrins, the amino acids tryptophan and tyrosine, and the coenzymes NADH, NADPH, and flavins. Coenzymes fluoresce in the blue/green spectral region (fluorecence lifetimes: 0.5–6 ns) and are highly sensitive indicators of metabolic function. Steadystate and time-resolved blue-green autofluorescence is, therefore, an appropriate measure of the function of the respiratory chain as well as of cellular and tissue damage. Autofluorescence in the yellow/red spectral region is based mainly on endogenous porphyrins and metalloporphyrins, such as coproporphyrin, protoporphyrin (fluorescence lifetime of porphyrin monomers: >10 ns), and Zn-protoporphyrin (2 ns). Various pathological microorganisms such asPropionibacterium acnes, Pseudomonas aeruginosa, Actinomyces odontolyticus, Bacteroides intermedius, andSaccharomyces cerevisiae are able to synthesize large amounts of these fluorophores and can therefore be located. This permits fluorescence-based detection of a variety of diseases, including early-stage dental caries, dental plaque, acne vulgaris, otitis externa, and squamous cell carcinoma. The sensitivity of noninvasive autofluorescence diagnostics can be enhanced by time-gated fluorescence measurements using an appropriate time delay between ultrashort laser excitation and detection. For example, videocameras with ultrafast shutters, in the nanosecond region, can be used to create “caries images” of the teeth. Alternatively, autofluorescence can be enhanced by stimulating protoporphyrin biosynthesis with the exogenously administered porphyrin precursor 5-aminolevulinic acid (ALA). The fluorophore protoporphyrin IX (PP IX) is photolabile and photodynamically active. Irradiation of PP IX-containing tissue results in cytotoxic reactions which correlate with modifications in fluorescence due to photobleaching and singlet oxygen-dependent photoproduct formation. Therefore, on-line autofluorescence measurements during the phototreatment can yield information on the efficiency of ALA-based photodynamic therapy.
This is a preview of subscription content, access via your institution.
References
D. Creed (1984)Photochem. Photobiol. 39, 537–562.
D. Creed (1984)Photochem. Photobiol. 39, 563–575.
A. White et al. (1978)Principles of Biochemistry, McGraw-Hill, New York.
National Academy of Sciences (1984)Specifications and Criteria of Biochemical Compounds, 3rd ed., Sigma Chemical Company, St. Louis, MO.
J. Lakowicz (1986)Principles of Fluorescence Spectroscopy, Plenum Press, New York.
S. D. Kozikowski, L. J. Wolfram, and R. R. Alfano (1984)IEEE-QE 12, 1379–1382.
J. H. Aiken and C. W. Hui (1991)Anal. Lett. 24, 167–180.
R. R. Alfano et al. (1984)IEEE-QE 20, 1507–1511.
A. R. Holzwarth and T. A. Roelofs (1992)J. Photochem. Photobiol. B 15, 45–62.
H. Schneckenburger and W. Schmidt (1992)J. Photochem. Photobiol. B 13, 190–193.
C. Lee (1974)Biochem. Biophys. Res. Commun. 60, 838–843.
J. M. Salmon et al. (1982)Photochem. Photobiol. 36, 585–593.
P. Galland and H. Senger (1988)J. Photochem. Photobiol. B 1, 277–294.
M. Sun, T. A. Moore, and P. S. Song (1972)J. Am. Chem. Soc. 94, 1730–1740.
K. Koeniget al. (1994) In W. Waidelich (Ed.),Laser. Optoelectronics in Medicine (in press).
H. Schneckenburger and K. Koenig (1992)Opt. Eng. 31, 1447–1451.
B. Chance et al. (1962)Science 137, 499–508.
B. Chance and F. F. Josis (1959)Nature 184, 195–196.
C. Y. Guezennec et al. (1991)Eur. J. Appl. Physiol. 63, 36.
A. Mayevski (1984)Brain Res. Rev. 7, 49–68.
W. Lohmann and E. Paul (1988)Naturwissenschaften 75, 201–202.
W. Lohmann et al. (1990)Z. Naturforsch. 45c, 1063–1066.
H. Schneckenburger, A. Rueck, and O. Haferkamp (1989)Anal. Chim. Acta 227, 227–233.
H. Schneckenburger, P. Gessler, and I. Pavenstaedt-Grupp (1992)J. Histchem. Cytochem. 40, 1573–1578.
P. S. Song (1980) in H. Senger (Ed.),The Blue Light Syndrome, Springer, Berlin, pp. 157–171.
K. Koeniget al. (1994)SPIE Budapest 2086 (in press).
D. R. Doiron and O. J. Gomer (1983)Porphyrin Localization and Treatment of Tumours, Alan R Liss, New York.
J. C. Kennedy and R. H. Pottier (1992)J. Photochem. Photobiol. B 14, 275–292.
A. K. Gupta and T. F. Anderson (1987)J. Am. Acad. Dermatol. 17, 703–734.
J. W. Young and E. T. Conte (1991)Int. J. Dermatol. 30, 399–404.
D. Fuchs et al. (1990)AIDS 4, 341–344.
H. N. Shah et al. (1979)Biochem. J. 180, 45–50.
C. E. Cornelius and G. D. Ludwig (1967)J. Invest. Derm. 49, 368–370.
B. Kjeldstad, A. Johnsson, and S. Sandberg (1984)Arch. Dermatol. Res. 276, 396–400.
A. Johnsson, B. Kjeldstad, and T. B. Melo (1987)Arch. Dermatol. Res. 279, 190–193.
J. S. Brazier (1986)J. Appl. Bacteriol. 60, 121–126.
R. L. Harms, D. R. Martinez, and V. M. Griego (1986)Appl. Eviron. Microbiol. 51, 481–486.
R. de la Fuente et al. (1986)FEMS Microbiol Lett. 35, 183–188.
K. Koenig, W. Dietel, and H. Schubert (1989)Neoplasma 36, 135–138.
G. Weagle et al. (1988)J. Photochem. Photobiol. B 2, 313–320.
K. Koeniget al. (1994)SPIE Budapest 2078 (in press).
B. A. Tapper et al. (1975)J. Sci. Food Agr. 26, 277–284.
A. Policard (1924)C.R. Soc. Biol. 91, 1423–1424.
S. Bommer (1927)Klin. Wochenschr. 24, 1142–1144.
H. Gougerot and A. Patte (1939)Bull. Soc. Franc. Derm. Syph. 46, 288–295.
F. Rochese (1954)Oral Surg. Oral Med. Oral Pathol. 7, 353–362.
D. Sharvill (1955)Trans. St. John's Hosp. Derm. Soc. (London) 34, 32–36.
F. N. Ghadially (1960)J. Pathol. Bact. 80, 345–361.
F. N. Ghadially and W. J. P. Neish (1960)Nature 188, 1124.
F. N. Ghadially, W. J. P. Neish, and H. C. Dawkins (1963)J. Pathol. Bact. 85, 77–92.
D. M. Harris and J. Werkhaven (1987)Lasers Surg. Med. 7, 467–472.
Y. Yuanlong et al. (1987)Lasers Surg. Med. 7, 528–532.
W. Dietel, K. Koenig,and P. Dorn (1988)Laser-Induced Autofluorescence of Tumors, PDT School, Berlin.
K. Koenig, J. Hemmer, and H. Schneckenburger (1992) in P. Spinelli, M. DalFante, and R. Marchesini (Eds.),Photodynamic Therapy and Biomedical Lasers, Elsevier, Amsterdam, pp. 903–906.
R. Margalit and S. Cohnes (1985)J. Inorg. Biochem. 25, 187–195.
S. Sommer, C. Rimington, and J. Moan (1984)FEBS 172, 267–271.
S. Montan and L. G. Stroemblad (1987)Lasers Life Sci. 1, 275–285.
J. Hung et al. (1991)Lasers Surg. Med. 11, 99–105.
G. C. Tang and R. R. Alfano (1989)Lasers Surg. Med. 9, 290–295.
S. Svanberget al. (1994)SPIE Budapest 2081 (in press).
I. Formanek et al. (1977)Arch. Dermatol. Res. 259, 169–176.
D. Fanta et al. (1981)Arch. Dermatol. Res. 271, 127–133.
D. Fanta et al. (1978)Arch. Dermatol. Res. 261, 175–179.
W. S. Lee, A. R. Shalita, and M. B. Poh-Fitzpatrick (1978)J. Bacteriol. 133, 811–815.
K. Koenig, A. Rueck, and H. Schneckenburger (1992)Opt. Eng. 31, 1470–1474.
H. Meffert. Personal communication.
A. V. Lassus et al. (1983)Dermatol. Monatsschr. 169, 376–379.
H. C. Benedict (1928)Science 67, 442.
R. L. Hartles and A. G. Leaver (1953)Biochem. J. 54, 632–638.
W. G. Armstrong (1963)Arch. Oral Biol. 8, 79–90.
R. R. Alfano and S. S. Yao (1981)J. Dent. Res. 80, 120–122.
H. Bjelkhagen (1981)IEEE-QE 17, 226–228.
H. Bjelkhagen et al. (1982)Swed. Dent. J. 6, 1–7.
R. R. Alfano et al. (1984)IEEE-QE 20, 1512–1515.
S. Albin, C. E. Byvik, and A. M. Buonchristini (1988)SPIE 907, 96–98.
U. Hafstocm-Bjoerkman et al. (1991)Acta Odontol. Scand. 49, 27.
K. Koenig et al. (1993)SPIE 907, 125–131.
K. Koeniget al. (1994)SPIE Budapest 2080 (in press).
J. M. Hardie and G. H. Bowden (1974) in F. A. Skinner and J. G. Carr (Eds.),Microbial Flora of Man, Academic Press, New York, p. 58.
J. M. Li et al. (1989)J. Bacteriol. 171, 2547–2552.
I. Z. Ades (1990)Int. J. Biochem. 22, 565–578.
J. Z. Yang et al. (1993)Photochem. Photobiol. 57, 803–807.
Z. Malik and M. Djaldetti (1979)Cell. Different. 8, 223–233.
R. Baumgaertneret al. (1994)SPIE Budapest (in press).
H. Schneckenburgeret al. (1994)Opt. Eng. (in press).
K. Koenig, F. Genze, and K. Miller (1993)Dermatol. Monatsschr. 179, 132–134.
F. DcMatteis and B. E. Prior (1962)Biochem. J. 83, 1–8.
F. DeMatteis and C. Remmington (1963)Br. J. Dermatol. 75, 91–104.
A. M. Brady and E. F. Lock (1992)Arch. Toxicol. 66, 175–181.
Z. Maliket al. (1994)SPIE Budapest 2078 (in press).
G. T. Javor and E. F. Febre (1992)J. Bacteriol. 174, 1072–1075.
M. Doss and W. K. P. Dormston (1971)Hoppe-Seyler Physiol. Chem. 352, 725–733.
W. K. Philipp-Dormston and M. Doss (1975) Overproduction of porphyrins and heme in heterotrophic bacteria.Z. Naturforsch. 30, 425–426.
A. Andreoni et al. (1982)Chem. Phys. Lett. 88, 33–36.
M. Yamashita et al. (1984)IEEE-QE 20, 1363–1369.
H. Schneckenburger, H. K. Seidlitz, and J. Eberz (1988)J. Photochem. Photobiol. B 2, 1–19.
K. Koenig, H. Wabnitz, and W. Dietel (1990)J. Photochem. Photobiol. B 8, 103–111.
H. Schneckenburger et al. (1994) in W. Waidelich (Ed.),Laser '93-Optoelectronics in Medicine, Springer, Berlin-Heidelberg (in press).
R. Pottier and T. G. Truscott (1986)Int. J. Radiat. Biol. 50, 421–452.
P. Valat, G. D. Reinhardt, and D. M. Jameson (1988)Photochem. Photobiol. 47, 787–790.
W. Dietel, K. Koenig, and E. Zenkevich (1990)Lasers Life Sci. 3, 197–203.
H. K. Scidlitz et al. (1992)Opt. Eng. 31, 1482–1486.
K. Koenig et al. (1993)J. Photochem. Photobiol. B 18, 287–290.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Koenig, K., Schneckenburger, H. Laser-induced autofluorescence for medical diagnosis. J Fluoresc 4, 17–40 (1994). https://doi.org/10.1007/BF01876650
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01876650
Key words
- Autofluorescence
- medical diagnosis
- fluorophores
- NADH
- flavins
- porphyrins
- ALA