Journal of Fluorescence

, Volume 4, Issue 1, pp 17–40 | Cite as

Laser-induced autofluorescence for medical diagnosis

  • K. Koenig
  • H. Schneckenburger
Fluorescence Sensing


The naturally occurring autofluorescence of cells and tissues is based on biomolecules containing intrinsic fluorophores, such as porphyrins, the amino acids tryptophan and tyrosine, and the coenzymes NADH, NADPH, and flavins. Coenzymes fluoresce in the blue/green spectral region (fluorecence lifetimes: 0.5–6 ns) and are highly sensitive indicators of metabolic function. Steadystate and time-resolved blue-green autofluorescence is, therefore, an appropriate measure of the function of the respiratory chain as well as of cellular and tissue damage. Autofluorescence in the yellow/red spectral region is based mainly on endogenous porphyrins and metalloporphyrins, such as coproporphyrin, protoporphyrin (fluorescence lifetime of porphyrin monomers: >10 ns), and Zn-protoporphyrin (2 ns). Various pathological microorganisms such asPropionibacterium acnes, Pseudomonas aeruginosa, Actinomyces odontolyticus, Bacteroides intermedius, andSaccharomyces cerevisiae are able to synthesize large amounts of these fluorophores and can therefore be located. This permits fluorescence-based detection of a variety of diseases, including early-stage dental caries, dental plaque, acne vulgaris, otitis externa, and squamous cell carcinoma. The sensitivity of noninvasive autofluorescence diagnostics can be enhanced by time-gated fluorescence measurements using an appropriate time delay between ultrashort laser excitation and detection. For example, videocameras with ultrafast shutters, in the nanosecond region, can be used to create “caries images” of the teeth. Alternatively, autofluorescence can be enhanced by stimulating protoporphyrin biosynthesis with the exogenously administered porphyrin precursor 5-aminolevulinic acid (ALA). The fluorophore protoporphyrin IX (PP IX) is photolabile and photodynamically active. Irradiation of PP IX-containing tissue results in cytotoxic reactions which correlate with modifications in fluorescence due to photobleaching and singlet oxygen-dependent photoproduct formation. Therefore, on-line autofluorescence measurements during the phototreatment can yield information on the efficiency of ALA-based photodynamic therapy.

Key words

Autofluorescence medical diagnosis fluorophores NADH flavins porphyrins ALA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Creed (1984)Photochem. Photobiol. 39, 537–562.Google Scholar
  2. 2.
    D. Creed (1984)Photochem. Photobiol. 39, 563–575.Google Scholar
  3. 3.
    A. White et al. (1978)Principles of Biochemistry, McGraw-Hill, New York.Google Scholar
  4. 4.
    National Academy of Sciences (1984)Specifications and Criteria of Biochemical Compounds, 3rd ed., Sigma Chemical Company, St. Louis, MO.Google Scholar
  5. 5.
    J. Lakowicz (1986)Principles of Fluorescence Spectroscopy, Plenum Press, New York.Google Scholar
  6. 6.
    S. D. Kozikowski, L. J. Wolfram, and R. R. Alfano (1984)IEEE-QE 12, 1379–1382.Google Scholar
  7. 7.
    J. H. Aiken and C. W. Hui (1991)Anal. Lett. 24, 167–180.Google Scholar
  8. 8.
    R. R. Alfano et al. (1984)IEEE-QE 20, 1507–1511.Google Scholar
  9. 9.
    A. R. Holzwarth and T. A. Roelofs (1992)J. Photochem. Photobiol. B 15, 45–62.Google Scholar
  10. 10.
    H. Schneckenburger and W. Schmidt (1992)J. Photochem. Photobiol. B 13, 190–193.Google Scholar
  11. 11.
    C. Lee (1974)Biochem. Biophys. Res. Commun. 60, 838–843.Google Scholar
  12. 12.
    J. M. Salmon et al. (1982)Photochem. Photobiol. 36, 585–593.Google Scholar
  13. 13.
    P. Galland and H. Senger (1988)J. Photochem. Photobiol. B 1, 277–294.Google Scholar
  14. 14.
    M. Sun, T. A. Moore, and P. S. Song (1972)J. Am. Chem. Soc. 94, 1730–1740.Google Scholar
  15. 15.
    K. Koeniget al. (1994) In W. Waidelich (Ed.),Laser. Optoelectronics in Medicine (in press).Google Scholar
  16. 16.
    H. Schneckenburger and K. Koenig (1992)Opt. Eng. 31, 1447–1451.Google Scholar
  17. 17.
    B. Chance et al. (1962)Science 137, 499–508.Google Scholar
  18. 18.
    B. Chance and F. F. Josis (1959)Nature 184, 195–196.Google Scholar
  19. 19.
    C. Y. Guezennec et al. (1991)Eur. J. Appl. Physiol. 63, 36.Google Scholar
  20. 20.
    A. Mayevski (1984)Brain Res. Rev. 7, 49–68.Google Scholar
  21. 21.
    W. Lohmann and E. Paul (1988)Naturwissenschaften 75, 201–202.Google Scholar
  22. 22.
    W. Lohmann et al. (1990)Z. Naturforsch. 45c, 1063–1066.Google Scholar
  23. 23.
    H. Schneckenburger, A. Rueck, and O. Haferkamp (1989)Anal. Chim. Acta 227, 227–233.Google Scholar
  24. 24.
    H. Schneckenburger, P. Gessler, and I. Pavenstaedt-Grupp (1992)J. Histchem. Cytochem. 40, 1573–1578.Google Scholar
  25. 25.
    P. S. Song (1980) in H. Senger (Ed.),The Blue Light Syndrome, Springer, Berlin, pp. 157–171.Google Scholar
  26. 26.
    K. Koeniget al. (1994)SPIE Budapest 2086 (in press).Google Scholar
  27. 27.
    D. R. Doiron and O. J. Gomer (1983)Porphyrin Localization and Treatment of Tumours, Alan R Liss, New York.Google Scholar
  28. 28.
    J. C. Kennedy and R. H. Pottier (1992)J. Photochem. Photobiol. B 14, 275–292.Google Scholar
  29. 29.
    A. K. Gupta and T. F. Anderson (1987)J. Am. Acad. Dermatol. 17, 703–734.Google Scholar
  30. 30.
    J. W. Young and E. T. Conte (1991)Int. J. Dermatol. 30, 399–404.Google Scholar
  31. 31.
    D. Fuchs et al. (1990)AIDS 4, 341–344.Google Scholar
  32. 32.
    H. N. Shah et al. (1979)Biochem. J. 180, 45–50.Google Scholar
  33. 33.
    C. E. Cornelius and G. D. Ludwig (1967)J. Invest. Derm. 49, 368–370.Google Scholar
  34. 34.
    B. Kjeldstad, A. Johnsson, and S. Sandberg (1984)Arch. Dermatol. Res. 276, 396–400.Google Scholar
  35. 35.
    A. Johnsson, B. Kjeldstad, and T. B. Melo (1987)Arch. Dermatol. Res. 279, 190–193.Google Scholar
  36. 36.
    J. S. Brazier (1986)J. Appl. Bacteriol. 60, 121–126.Google Scholar
  37. 37.
    R. L. Harms, D. R. Martinez, and V. M. Griego (1986)Appl. Eviron. Microbiol. 51, 481–486.Google Scholar
  38. 38.
    R. de la Fuente et al. (1986)FEMS Microbiol Lett. 35, 183–188.Google Scholar
  39. 39.
    K. Koenig, W. Dietel, and H. Schubert (1989)Neoplasma 36, 135–138.Google Scholar
  40. 40.
    G. Weagle et al. (1988)J. Photochem. Photobiol. B 2, 313–320.Google Scholar
  41. 41.
    K. Koeniget al. (1994)SPIE Budapest 2078 (in press).Google Scholar
  42. 42.
    B. A. Tapper et al. (1975)J. Sci. Food Agr. 26, 277–284.Google Scholar
  43. 43.
    A. Policard (1924)C.R. Soc. Biol. 91, 1423–1424.Google Scholar
  44. 44.
    S. Bommer (1927)Klin. Wochenschr. 24, 1142–1144.Google Scholar
  45. 45.
    H. Gougerot and A. Patte (1939)Bull. Soc. Franc. Derm. Syph. 46, 288–295.Google Scholar
  46. 46.
    F. Rochese (1954)Oral Surg. Oral Med. Oral Pathol. 7, 353–362.Google Scholar
  47. 47.
    D. Sharvill (1955)Trans. St. John's Hosp. Derm. Soc. (London) 34, 32–36.Google Scholar
  48. 48.
    F. N. Ghadially (1960)J. Pathol. Bact. 80, 345–361.Google Scholar
  49. 49.
    F. N. Ghadially and W. J. P. Neish (1960)Nature 188, 1124.Google Scholar
  50. 50.
    F. N. Ghadially, W. J. P. Neish, and H. C. Dawkins (1963)J. Pathol. Bact. 85, 77–92.Google Scholar
  51. 51.
    D. M. Harris and J. Werkhaven (1987)Lasers Surg. Med. 7, 467–472.Google Scholar
  52. 52.
    Y. Yuanlong et al. (1987)Lasers Surg. Med. 7, 528–532.Google Scholar
  53. 53.
    W. Dietel, K. Koenig,and P. Dorn (1988)Laser-Induced Autofluorescence of Tumors, PDT School, Berlin.Google Scholar
  54. 54.
    K. Koenig, J. Hemmer, and H. Schneckenburger (1992) in P. Spinelli, M. DalFante, and R. Marchesini (Eds.),Photodynamic Therapy and Biomedical Lasers, Elsevier, Amsterdam, pp. 903–906.Google Scholar
  55. 55.
    R. Margalit and S. Cohnes (1985)J. Inorg. Biochem. 25, 187–195.Google Scholar
  56. 56.
    S. Sommer, C. Rimington, and J. Moan (1984)FEBS 172, 267–271.Google Scholar
  57. 57.
    S. Montan and L. G. Stroemblad (1987)Lasers Life Sci. 1, 275–285.Google Scholar
  58. 58.
    J. Hung et al. (1991)Lasers Surg. Med. 11, 99–105.Google Scholar
  59. 59.
    G. C. Tang and R. R. Alfano (1989)Lasers Surg. Med. 9, 290–295.Google Scholar
  60. 60.
    S. Svanberget al. (1994)SPIE Budapest 2081 (in press).Google Scholar
  61. 61.
    I. Formanek et al. (1977)Arch. Dermatol. Res. 259, 169–176.Google Scholar
  62. 62.
    D. Fanta et al. (1981)Arch. Dermatol. Res. 271, 127–133.Google Scholar
  63. 63.
    D. Fanta et al. (1978)Arch. Dermatol. Res. 261, 175–179.Google Scholar
  64. 64.
    W. S. Lee, A. R. Shalita, and M. B. Poh-Fitzpatrick (1978)J. Bacteriol. 133, 811–815.Google Scholar
  65. 65.
    K. Koenig, A. Rueck, and H. Schneckenburger (1992)Opt. Eng. 31, 1470–1474.Google Scholar
  66. 66.
    H. Meffert. Personal communication.Google Scholar
  67. 67.
    A. V. Lassus et al. (1983)Dermatol. Monatsschr. 169, 376–379.Google Scholar
  68. 68.
    H. C. Benedict (1928)Science 67, 442.Google Scholar
  69. 69.
    R. L. Hartles and A. G. Leaver (1953)Biochem. J. 54, 632–638.Google Scholar
  70. 70.
    W. G. Armstrong (1963)Arch. Oral Biol. 8, 79–90.Google Scholar
  71. 71.
    R. R. Alfano and S. S. Yao (1981)J. Dent. Res. 80, 120–122.Google Scholar
  72. 72.
    H. Bjelkhagen (1981)IEEE-QE 17, 226–228.Google Scholar
  73. 73.
    H. Bjelkhagen et al. (1982)Swed. Dent. J. 6, 1–7.Google Scholar
  74. 74.
    R. R. Alfano et al. (1984)IEEE-QE 20, 1512–1515.Google Scholar
  75. 75.
    S. Albin, C. E. Byvik, and A. M. Buonchristini (1988)SPIE 907, 96–98.Google Scholar
  76. 76.
    U. Hafstocm-Bjoerkman et al. (1991)Acta Odontol. Scand. 49, 27.Google Scholar
  77. 77.
    K. Koenig et al. (1993)SPIE 907, 125–131.Google Scholar
  78. 78.
    K. Koeniget al. (1994)SPIE Budapest 2080 (in press).Google Scholar
  79. 79.
    J. M. Hardie and G. H. Bowden (1974) in F. A. Skinner and J. G. Carr (Eds.),Microbial Flora of Man, Academic Press, New York, p. 58.Google Scholar
  80. 80.
    J. M. Li et al. (1989)J. Bacteriol. 171, 2547–2552.Google Scholar
  81. 81.
    I. Z. Ades (1990)Int. J. Biochem. 22, 565–578.Google Scholar
  82. 82.
    J. Z. Yang et al. (1993)Photochem. Photobiol. 57, 803–807.Google Scholar
  83. 83.
    Z. Malik and M. Djaldetti (1979)Cell. Different. 8, 223–233.Google Scholar
  84. 84.
    R. Baumgaertneret al. (1994)SPIE Budapest (in press).Google Scholar
  85. 85.
    H. Schneckenburgeret al. (1994)Opt. Eng. (in press).Google Scholar
  86. 86.
    K. Koenig, F. Genze, and K. Miller (1993)Dermatol. Monatsschr. 179, 132–134.Google Scholar
  87. 87.
    F. DcMatteis and B. E. Prior (1962)Biochem. J. 83, 1–8.Google Scholar
  88. 88.
    F. DeMatteis and C. Remmington (1963)Br. J. Dermatol. 75, 91–104.Google Scholar
  89. 89.
    A. M. Brady and E. F. Lock (1992)Arch. Toxicol. 66, 175–181.Google Scholar
  90. 90.
    Z. Maliket al. (1994)SPIE Budapest 2078 (in press).Google Scholar
  91. 91.
    G. T. Javor and E. F. Febre (1992)J. Bacteriol. 174, 1072–1075.Google Scholar
  92. 92.
    M. Doss and W. K. P. Dormston (1971)Hoppe-Seyler Physiol. Chem. 352, 725–733.Google Scholar
  93. 93.
    W. K. Philipp-Dormston and M. Doss (1975) Overproduction of porphyrins and heme in heterotrophic bacteria.Z. Naturforsch. 30, 425–426.Google Scholar
  94. 94.
    A. Andreoni et al. (1982)Chem. Phys. Lett. 88, 33–36.Google Scholar
  95. 95.
    M. Yamashita et al. (1984)IEEE-QE 20, 1363–1369.Google Scholar
  96. 96.
    H. Schneckenburger, H. K. Seidlitz, and J. Eberz (1988)J. Photochem. Photobiol. B 2, 1–19.Google Scholar
  97. 97.
    K. Koenig, H. Wabnitz, and W. Dietel (1990)J. Photochem. Photobiol. B 8, 103–111.Google Scholar
  98. 98.
    H. Schneckenburger et al. (1994) in W. Waidelich (Ed.),Laser '93-Optoelectronics in Medicine, Springer, Berlin-Heidelberg (in press).Google Scholar
  99. 99.
    R. Pottier and T. G. Truscott (1986)Int. J. Radiat. Biol. 50, 421–452.Google Scholar
  100. 100.
    P. Valat, G. D. Reinhardt, and D. M. Jameson (1988)Photochem. Photobiol. 47, 787–790.Google Scholar
  101. 101.
    W. Dietel, K. Koenig, and E. Zenkevich (1990)Lasers Life Sci. 3, 197–203.Google Scholar
  102. 102.
    H. K. Scidlitz et al. (1992)Opt. Eng. 31, 1482–1486.Google Scholar
  103. 103.
    K. Koenig et al. (1993)J. Photochem. Photobiol. B 18, 287–290.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • K. Koenig
    • 1
    • 2
  • H. Schneckenburger
    • 1
    • 3
  1. 1.Institute of Lasertechnology in MedicineUlmGermany
  2. 2.Beckman Laser Institute and Medical ClinicIrvine
  3. 3.Department of OptoelectronicsFachhochschule AalenAalenGermany

Personalised recommendations