Periodica Mathematica Hungarica

, Volume 28, Issue 3, pp 235–240 | Cite as

Lifting intertwining operators

  • Z. Sebestyén

Mathematics subject classification numbers, 1991

Primary 47A20 Secondary 93C05 

Key words and phrases

Sz. Nagy-Foias commutant lifting theorem Parrott's theorem Ando's theorem dilatation theorem one-step extension anticommuting contractions and unitaries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. G. Douglas, P. S. Muhly andC. Pearcy, Lifting commuting operators,Michigan Math. J. 15 (1968), 385–395.MR 38#5046:Google Scholar
  2. [2]
    C. Foias andA. Tannenbaum, A strong Parrott theorem,Proc. Amer. Math. Soc. 106 (1989), 777–784.MR 90#47011Google Scholar
  3. [3]
    S. Parrott, On the quotient norm and the Sz-Nagy-Foias lifting theorem,J. Functional Analysis 30 (1978), 311–328.MR 81#47006Google Scholar
  4. [4]
    Z. Sebestyén, A proof of Parrott's theorem on quotient norms,Per. Math. Hung. 20 (1989), 85–87.MR 90h:47019Google Scholar
  5. [5]
    Z. Sebestyén, Parrott's theorem versus strong Parrott theorem, Semesterbereichte,Funktionalanalysis Tübingen, Wintersemester 89/90 227–229.Google Scholar
  6. [6]
    Z. Sebestyén andÁ. Magyar, Compact self-adjoint extension of suboperators,Lin. Alg. and Its Applications (submitted).Google Scholar
  7. [7]
    B. Sz. Nagy andC. Foias, Dilation des commutants d'opérateurs,C. R. Acad. Sci. Paris,266 (1968), 493–495.MR 38#5049Google Scholar
  8. [8]
    B. Sz. Nagy andC. Foias,Harmonic Analysis of Operators on Hilbert Space, North-Holland, 1970.MR 43#947Google Scholar

Copyright information

© Akadémiai Kiadó 1994

Authors and Affiliations

  • Z. Sebestyén
    • 1
  1. 1.Department of Applied AnalysisEötvös UniversityBudapestHungary

Personalised recommendations