Periodica Mathematica Hungarica

, Volume 26, Issue 2, pp 139–156 | Cite as

A description of the segment [1,T], where T is the meeting number of a set-lattice

  • B. Uhrin

Mathematics subject classification numbers, 1991

Primary 11H16 

Key words and phrases

Set-lattice meeting number the number of lattice points in a difference set affine dimension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Bombieri, Sulla dimostrazione di C. L. Siegel de teorema fondamentale di Minkowski nella geometria dei numeri,Boll. Un. Math. Ital., Ser. III.,17 (1962), 283–288.Google Scholar
  2. [2]
    J. W. S. Cassels,An Introduction to the Geometry of Numbers, Springer, Berlin-Göttingen-Heidelberg, 1959.Google Scholar
  3. [3]
    P. Erdős, P. M. Gruber andJ. Hammer,Lattice Points, Longman Sci., London, 1989.Google Scholar
  4. [4]
    P. Erdős andC. A. Rogers, The start number of coverings of space with convex bodies,Acta Arithm.,9 (1964), 41–45.Google Scholar
  5. [5]
    G. Freiman, A. Heppes andB. Uhrin, A lower estimation for the cardinality of finite difference sets inR n. In: K. Győry, G. Halász, Eds.,Number Theory, Budapest, 1987,Coll. Math. Soc. J. Bolyai, Vol51, North-Holland, Amsterdam-New York, 1989, 125–139.Google Scholar
  6. [6]
    H. Groemer, Über Treffanzahlen in Figurengittern,Monatsh. f. Math.,74 (1970), 21–29.Google Scholar
  7. [7]
    P. M. Gruber andC. G. Lekkerkerker,Geometry of Numbers, North-Holland, Amsterdam-New York, 1987.Google Scholar
  8. [8]
    H. Hadwiger, Über Mittelwerte in Figurengittern,Com. Math. Helv.,11 (1938), 221–233.Google Scholar
  9. [9]
    H. Hadwiger, Über Treffanzahlen bei translationsgleichen Eikörpern,Arch. Math.,8 (1957), 212–213.Google Scholar
  10. [10]
    G. H. Hardy, J. E. Littlewood andG. Pólya,Inequalities, Cambridge Univ. Press, Cambridge, 1951.Google Scholar
  11. [11]
    C. A. Rogers,Packing and Covering, Cambridge Univ. Press, 1964.Google Scholar
  12. [12]
    C. L. Siegel,Lectures on the Geometry of Numbers, Notes by B. Friedman, Rewritten by K. Chandrasekharan and R. Suter, Springer, Berlin-Heidelberg-New York, 1989.Google Scholar
  13. [13]
    C. L. Siegel, Über gitterpunkte in konvexen Körpern und ein damit zusammenhängendes Extremal-problem,Acta Math.,68 (1935), 307–323.Google Scholar
  14. [14]
    B. Uhrin, Some useful estimations in geometry of numbers,Period. Math. Hungar.,11 (1980), 95–103.Google Scholar
  15. [15]
    B. Uhrin, On a generalization of Minkowski convex body theorem,J. of Number Th.,13 (1981), 192–209.Google Scholar
  16. [16]
    B. Uhrin, Some remarks about the lattice points in difference sets, In: J. Szabados, K. Tandori, Eds.,Proc. of the A. Haar Memorial Conf., Budapest, 1985,Coll. Math. Soc. J. Bolyai, Vol.49., North-Holland, Amsterdam-New York, 1987, 929–937.Google Scholar
  17. [17]
    B. Uhrin, A remark to the paper of H. Hadwiger: Überdeckung des Raumes ...,Monatsh. f. Math.,104 (1987), 149–152.Google Scholar
  18. [18]
    B. Uhrin, On the star-number of a set-lattice,MTA-SZTAKI Közlemények, Budapest,39 (1988), 229–257.Google Scholar
  19. [19]
    B. Uhrin, The measure of covering the Euclidean space by group-translates of a set, In: G. M. Rassias, Ed.,The Math. Heritage of C. F. Gauss, World Scientific, Singapore-New Jersey-London, 1991, 785–809.Google Scholar
  20. [20]
    B. Uhrin, Two identities in geometry of numbers, with applications,Coll. Math. Soc. J. Bolyai, to appear.Google Scholar
  21. [21]
    B. Uhrin, New lower bounds for the number of lattice points in a difference set, In: G. M. Rassias, Ed.,B. Riemann Memorial Volume, World Scientific, Singapore-New Jersey-London, to appear.Google Scholar
  22. [22]
    B. Uhrin, The set of neighbours of a set in a point-lattice,Discrete Math., to appear.Google Scholar

Copyright information

© Akadémiai Kiadó 1993

Authors and Affiliations

  • B. Uhrin
    • 1
  1. 1.Computer and Automation InstituteHungabian Academy of SciencesBudapestHungary

Personalised recommendations