Advertisement

Periodica Mathematica Hungarica

, Volume 26, Issue 2, pp 115–124 | Cite as

On basicity of exponentials inLP (dμ) and general prediction problems

  • A. G. Miamee
Article

Abstract

Let μ be a nonnegative measure on the unit circle in the complex plane and 1<p<∞. It is of interest to find conditions on μ so that the set of exponentialse inθ form a strongM-basis forL p (dμ). Some partial results are proved which can shed some light on this important open question. These results are of fundamental importance in the prediction theory of stochastic processes and other fields of applications. These results is then used to obtain a theorem which reduces some prediction problems to easier ones.

Mathematics subject classification numbers, 1991

Primary 42A42 Secondary 60G25 

Key words and phrases

Prediction on theory m-basis strongm-basis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Cambanis andA. R. Soltani, Prediction of stable processes: Spectral and moving average representations.,Z. Wahrsch. Verw. Geb. 66 (1984), 593–612.Google Scholar
  2. [2]
    P. Duren,Theory of H p Spaces, Academic Press, New York and London (1970).Google Scholar
  3. [3]
    J. Garnett,Bounded Analytic Functions, Academic Press, New York (1981).Google Scholar
  4. [4]
    K. Hoffman,Banach Spaces of Analytic Functions, Prentice-Hall, Inc., Engelwood Cliffs, NJ (1962).Google Scholar
  5. [5]
    A. G. Miamee andM. Pourahmadi, Best Approximation inL p (dμ) and Prediction Problems of Szegő, Kolmogorov, Yaglom and Nakazi,J. London Math. Society,2 (1988), 133–145.Google Scholar
  6. [6]
    T. Nakazi, Two problems in prediction theory,Studia Math., T.LXXVIII, (1984), 7–14.Google Scholar
  7. [7]
    T. Nadazi andK. Takahasi, Predictionn units of time ahead,Proc. of the Amer. Math. Soc. 80 (1980), 658–659.Google Scholar
  8. [8]
    M. Pourahmadi, On minimality and interpolation of harmonizable stable processes,SIAM J. Appl. Math. 44 (1984), 1023–1030.Google Scholar
  9. [9]
    Yu. A. Rozanov Stationary Random Processes, Holden-Day, San Francisco (1967).Google Scholar
  10. [10]
    I. Singer,Bases in Banach Spaces II, Springer-Verlag, New York (1981).Google Scholar
  11. [11]
    K. Urbanik,Lectures on Prediction Theory Lecture Notes in Mathematics, No.44 Springer-Verlag, New York (1967).Google Scholar
  12. [12]
    A. Weron, Harmonizable stable processes on groups: Spectral,Ergodic and Interpolation Properties, Z. Wahrsch. Verw. Geb. 68 (1985), 473–491.Google Scholar
  13. [13]
    A. M. Yaglom, On a problem of linear interpolation of stationary random sequences and processes,Amer. Math. Sel. Transl. Math. Statist,4 (1963), 330–344.Google Scholar

Copyright information

© Akadémiai Kiadó 1993

Authors and Affiliations

  • A. G. Miamee
    • 1
  1. 1.Department of MathematicsHampton UniversityHamptonUSA

Personalised recommendations